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Introduction

Welcome to the First Workshop on Interactive and Executable Semantic Parsing (IntEx-SemPar 2020)!

Executable semantic parsers map natural language utterances to meaning representations that can be
executed in a particular context such as databases, knowledge graphs, robotic environment, and software
applications. It has become increasingly important as it allows users to seek information and control
computer systems naturally and flexibly via interactive exchanges in natural language. We envision that
practical semantic parsing systems need to be equipped with three core capabilities: (1) Understanding
user utterances in context and mapping them to executable forms. (2) Clarifying ambiguous utterances
and providing guidance for user to form valid input. (3) Providing a faithful explanation of its interpreted
actions for user verification and feedback. To this end, the problem of mapping well-formed, individual
natural language utterances to formal representations has been studied extensively. In comparison,
semantic parsing in an interactive setup has received less attention until very recently. Furthermore, most
of existing semantic parsers assume valid input only hence cannot detect ambiguous/invalid utterances
and clarify them effectively. There is also less focus on explainability and trustworthiness, where the
system can explain its interpreted actions to the user for verification and feedback.

The goal of this workshop is to bring together researchers and promote exciting work towards powerful,
robust, and reliable interactive executable semantic parsing systems. Through a rigorous review process,
out of 14 submissions, we accept 9 papers (3 non-archival and 6 archival). These papers explore
different aspects of semantic parsing in different application scenarios including robustness in Text-to-
SQL systems, explainability and interpretability in Knowledge Graphs, uncertainty and active learning in
Task-Oriented Dialog, adaptive language interfaces through decomposition, pretrainig models for table
semantic parsing, analysis in open-domain semantic parsing.

Furthermore, this workshop is featured with a strong and diverse lineup of six invited speakers from
areas spanning semantic parsing, dialogue systems, grounded language learning, robotics, and program
synthesis. Yoav Artzi from Cornell has contributed significantly to natural language learning in situated
interactions. Jonathan Berant from Tel-Aviv University has made pioneer work in semantic parsing
and question answering under weak supervision. Richard Socher is a leading researcher in Natural
Language Processing, computer vision, Deep Learning, and Artificial Intelligence. Dilek Hakkani-Tür
has made fundamental contributions to spoken dialog and conversation modeling and she is currently
leading the Amazon Alexa AI team. Alex Polozov from Microsoft Research is a leading researcher in
neural program synthesis from input-output examples and natural language. Mirella Lapata is a world-
renowned professor from the University of Edinburgh working on semantic parsing, question answering,
and natural language processing in general.

We hope you enjoy this rich program and contribute to the future success of this field!

IntEx-SemPar 2020 Organizers
Ben Bogin, Tel Aviv University
Srinivasan Iyer, University of Washington
Victoria Lin, Salesforce Research
Dragomir Radev, Yale University
Alane Suhr, Cornell University
Panupong (Ice) Pasupat, Google
Caiming Xiong, Salesforce Research
Pengcheng Yin, Carnegie Mellon University
Tao Yu, Yale University
Rui Zhang, Penn State University
Victor Zhong, University of Washington
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Abstract
In the era of Big Knowledge Graphs, Ques-
tion Answering (QA) systems have reached
a milestone in their performance and feasibil-
ity. However, their applicability, particularly
in specific domains such as the biomedical do-
main, has not gained wide acceptance due to
their “black box” nature, which hinders trans-
parency, fairness, and accountability ofQA sys-
tems. Therefore, users are unable to understand
how andwhy particular questions have been an-
swered, whereas some others fail. To address
this challenge, in this paper, we develop an au-
tomatic approach for generating explanations
during various stages of a pipeline-based QA
system. Our approach is a supervised and auto-
matic approach which considers three classes
(i.e., success, no answer, andwrong answer) for
annotating the output of involved QA compo-
nents. Upon our prediction, a template expla-
nation is chosen and integrated into the output
of the corresponding component. To measure
the effectiveness of the approach, we conducted
a user survey as to how non-expert users per-
ceive our generated explanations. The results
of our study show a significant increase in the
four dimensions of the human factor from the
Human-computer interaction community.

1 Introduction
The recent advances of Question Answering (QA)
technologies mostly rely on (i) the advantages of
Big Knowledge Graphs which augment the seman-
tics, structure, and accessibility of data, e.g.,Web
of Data has published around 150B triples from a
variety of domains1, and (ii) the competency of con-
temporary AI approaches which train sophisticated
learning models (statistical models (Shekarpour
et al., 2015, 2013), neural networks (Lukovnikov
et al., 2017), and attention models (Liu, 2019)) on
a large size of training data, and given a variety of

1http://lodstats.aksw.org/

novel features captured from semantics, structure,
and context of the background data. However, sim-
ilar to other branches of AI applications, the state
of the art of QA systems are “black boxes” that
fail to provide transparent explanations about why
a particular answer is generated. This black box
behavior diminishes the confidence and trust of the
user and hinders the reliance and acceptance of the
black-box systems, especially in critical domains
such as healthcare, biomedical, life-science, and
self-driving cars (Samek et al., 2017; Miller, 2018).
The running hypothesis in this paper is that the lack
of explanation for answers provided by QA systems
diminishes the trust and acceptance of the user to-
wards these systems. Therefore, by implementing
more transparent, interpretable, or explainable QA
systems, the end users will be better equipped to
justify and therefore trust the output of QA systems
(Li et al., 2018).

Furthermore, data quality is a critical factor
that highly affects the performance of QA sys-
tems. In other words, when the background data
is flawed or outdated, it undermines the human-
likeness and acceptance of the QA systems if no
explanation is provided, especially for non-expert
users. For example, the SINA engine (Shekarpour
et al., 2015) failed to answer the simple question
“What is the population of Canada?” on the DB-
pedia (Auer et al., 2007) version 2013, whereas it
succeeded for similar questions such as “What is
the population of Germany?”. The error analysis
showed that the expected triple i.e., <dbr2:Canada
dbo3:population "xxx"> is missing from DB-
pedia 2013. Thus, if the QA system does not
provide any explanation about such failures, then
the non-expert user concludes the QA system into
the demerit points. Thus, in general, the errors or

2dbr is bound to http://dbpedia.org/resource/.
3The prefix dbo is bound to http://dbpedia.org/

ontology/.
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failures of the QA systems might be caused by the
inadequacies of the underlying data or misunder-
standing, misinterpretation, or miscomputation of
the employed computational models. In either case,
the black-box QA system does not provide any ex-
planations regarding the sources of the error. Often
the research community obsesses with the technical
discussion of QA systems and competes on enhanc-
ing the performance of the QA systems, whereas,
on the downside of the QA systems, there is a hu-
man who plays a vital role in the acceptance of the
system. The Human-Computer Interaction (HCI)
community already targeted various aspects of the
human-centered design and evaluation challenges
of black-box systems. However, the QA systems
over KGs received the least attention comparing to
other AI applications such as recommender systems
(Herlocker et al., 2000; Kouki et al., 2017).

Motivation andApproach: Plethora of QA sys-
tems over knowledge graphs developed in the last
decade (Höffner et al., 2017). These QA systems
are evaluated on various benchmarking datasets in-
cluding WebQuestions (Berant et al., 2013), QALD
(Unger et al., 2015), LC-QuAD (Trivedi et al.,
2017), and report results based on global metrics of
precision, recall, and F-score. In many cases, QA
approaches over KGs even surpass the human level
performance (Petrochuk and Zettlemoyer, 2018).
Irrespective of the underlying technology and algo-
rithms, these QA systems act as black box and do
not provide any explanation to the user regarding
1) why a particular answer is generated and 2) how
the given answer is extracted from the knowledge
source. The recent works towards explainable artifi-
cial intelligence (XAI) gained momentum because
several AI applications find limited acceptance due
to ethical reasons (Angwin et al., 2016) and a lack
of trust on behalf of their users (Stubbs et al., 2007).
The same rationale is also applicable to the black-
box QA systems. Research studies showed that
representing adequate explanations to the answer
brings acceptability and confidence to the user as
observed in various domains such as recommender
systems and visual question answering (Herlocker
et al., 2000; Hayes and Shah, 2017; Hendricks et al.,
2016; Wu and Mooney, 2018). In this paper, we
argue that having explanations increases the trust-
worthiness, transparency, and acceptance of the
answers of the QA system over KGs. Especially,
when the QA systems fail to answer a question or
provide a wrong answer, the explanatory output

helps to keep the user informed about a particular
behavior. Hence, we propose a template-based ex-
planation generation approach for QA systems. Our
proposed approach for explainable QA system over
KG provides (i) adequate justification: thus the end
user feels that they are aware of the reasoning steps
of the computational model, (ii) confidence: the
user can trust the system and has the willing for the
continuation of interactions, (iii) understandability:
educates the user as how the system infers or what
are the causes of failures and unexpected answers,
and (iv) user involvement: encourages the user
to engage in the process of QA such as question
rewriting.
Research Questions: We deal with two key

research questions about the explanations of the
QA systems as follows: RQ1: What is an effective
model and scheme for automatically generating
explanations? The computational model employed
in a QA system might be extremely complicated.
The exposure of the depth of details will not be
sufficient for the end user. The preference is to
generate natural language explanations that are
readable and understandable to the non-expert user.
RQ2: How is the perception of end users about
explanations along the human factor dimensions?,
which is whether or not the explanations establish
confidence, justification, understanding, and further
engagements of the user.

Our key contributions are: 1) a scheme for shal-
low explanatory QA pipeline systems, 2) a method
for automatically generating explanations, and 3) a
user survey to measure the human factors of user
perception from explanations. This paper is or-
ganized as follows: In Section 2, we review the
related work. Section 3 explains the major concepts
of the QA pipeline system, which is our employed
platform. Section 4 provides our presentation and
detailed discussion of the proposed approach. Our
experimental study is presented in Section 5, fol-
lowed by a discussion Section. We conclude the
paper in section 7.

2 Related Work

Researchers have tackled the problemof question an-
swering in various domains including open domain
question answering (Yang et al., 2019), biomedi-
cal (Bhandwaldar and Zadrozny, 2018), geospatial
(Punjani et al., 2018), and temporal (Jia et al.,
2018). Question answering over publicly available
KGs is a long-standing field with over 62 QA sys-
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tems developed since 2010 (Höffner et al., 2017).
The implementation of various QA systems can be
broadly categorized into three approaches (Singh,
2019; Diefenbach et al., 2018). The first is a seman-
tic parsing based approach such as (Usbeck et al.,
2015) that implements a QA system using several
linguistic analyses (e.g., POS tagging, dependency
parsing) and linked data technologies. The second
approach is an end-to-end machine learning based,
which uses a large amount of training data to map an
input question to its answer directly (e.g., in (Yang
et al., 2019; Lukovnikov et al., 2017)). The third ap-
proach is based on modular frameworks (Kim et al.,
2017; Singh et al., 2018b) which aims at reusing
individual modules of QA systems, independent
tools (such as entity linking, predicate linking) in
building QA systems collaboratively. Irrespective
of the implementation approach, domain, and the
underlying knowledge source (KG, documents, re-
lational tables, etc.), the majority of existing QA
systems act as a black box. The reason behind black
box behavior is due to either the monolithic tightly
coupled modules such as in semantic parsing based
QA systems or nested and nonlinear structure of
machine learning based algorithms employed in
QA systems. The modular framework, on the other
hand, provides flexibility to track individual stages
of the answer generation process. The rationale
behind our choice of the modular framework over
monolithic QA systems is a flexible architecture
design of such frameworks. It allows us to trace
failure at each stage of the QA pipeline. We enrich
the output of each step with adequate justification
with supporting natural language explanation for
the user. Hence, as the first step towards explain-
able QA over knowledge graphs, we propose an
automatic approach for generating a description
for each stage of a QA pipeline in a state-of-the-
art modular framework (in our case: Frankenstein
(Singh et al., 2018b)). We are not aware of any
work in the direction of explainable question an-
swering over knowledge graphs and we make the
first attempt in this paper. Although, efforts have
been made to explain visual question answering
systems. Some works generate textual explanations
for VQA by training a recurrent neural network
(RNN) to mimic examples of human descriptions
(Hendricks et al., 2016; Wu and Mooney, 2018)
directly. The work by (Ngonga Ngomo et al., 2013)
can be considered a closest attempt to our work.
The authors proposed a template based approach

to translate SPARQL queries into natural language
verbalization. We employ a similar template-based
approach to generate an automatic explanation for
QA pipelines.
In other domains, such as expert systems, the

earlier attempts providing explanations to the users
can be traced back in the early 70s (Shortliffe,
1974). Since then, extensive work has been done
to include explanations in expert systems followed
by recommender systems to explain the system’s
knowledge of the domain and the reasoning pro-
cesses these systems employ to produce results (for
details, please refer to (Moore and Swartout, 1988;
Jannach et al., 2010; Daher et al., 2017). For a rec-
ommender system, work by (Herlocker et al., 2000)
is an early attempt to evaluate different implemen-
tations of explanation interfaces in "MovieLens"
recommender system. Simple statements provided
to the customers as explanations mentioning the
similarity to other highly rated films or a favorite
actor or actress were among the best recommen-
dations of the MovieLens system compared to the
unexplained recommendations. Furthermore, appli-
cations of explanation are also considered in various
sub-domains of artificial intelligence, such as justi-
fying medical decision-making (Fox et al., 2007),
explaining autonomous agent behavior (Hayes and
Shah, 2017), debugging of machine learning mod-
els (Kulesza et al., 2015), and explaining predictions
of classifiers (Ribeiro et al., 2016).

3 QA Pipeline on Knowledge Graph

One of the implementation approaches for
answering questions from interlinked knowledge
graphs is typically a multi-stage process which is
called QA pipeline (Singh et al., 2018b). Each
stage of the pipeline deals with a required task
such as Named Entity Recognition (NER) and
Disambiguation (NED) (referred as Entity Linking
(EL)), Relation extraction and Linking (RL), and
Query Building (QB). There is an abundance of
components performing QA tasks (Diefenbach
et al., 2018). These implementations run on the
KGs and have been developed based on AI, NLP,
and Semantic Technologies, which accomplish one
or more tasks of a QA pipeline (Höffner et al.,
2017). Table 1 (Singh et al., 2018b) presents
performance of best QA components on the
LC-QuAD dataset, implementing QA tasks. The
components are Tag Me API (Ferragina and
Scaiella, 2010)) for NED, RL (Relation Linking)
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implemented by RNLIWOD4 and SPARQL query
builder by NLIWOD QB5). For example, given
the question “Did Tesla win a nobel prize in
physics?”, the ideal NED component is expected
to recognize the keyword “Tesla” as a named
entity and map it to the corresponding DBpedia
resource, i.e. dbr:Nikola_Tesla. Similarly, the
multi-word unit “nobel prize in physics” has to
be linked to dbr:Nobel_Prize_in_Physics.
Thereafter, a component performing RL finds
embedded relations in the given question and
links them to appropriate relations of the un-
derlying knowledge graph. In our example,
the keyword “win” is mapped to the relation
dbo:award. Finally, the QB component generates
a formal query (e.g. expressed in SPARQL)
(i.e. ASK {dbr:Nikola_Tesla dbo:award
dbr:Nobel_Prize_in_Physics.}). The per-
formance values in Table 1 are averaged over the
entire query inventory.

Table 1: Performance of QA components implementing
various QA tasks on LC-QuAD dataset.

QA Component QA Task Precision Recall F-Score
TagMe NED 0.69 0.66 0.67
RNLIWOD RL 0.25 0.22 0.23
NLIWOD QB QB 0.48 0.49 0.48

4 Approach
A full QA pipeline is required to answer a
given question q. Such QA pipelines are com-
posed of all the required components perform-
ing necessary tasks to transform a user-supplied
natural language (NL) question into a formal
query language (i.e., SPARQL). We consider
three generic classes for outputs of a full QA
pipeline or individual components, namely Oc ={Success,NoAnswer,WrongAnswer}. Concern-
ing a given question, a “success” class is when the
QA pipeline (component) successfully provides a
correct output, a “No Answer” class happens when
the full QA pipeline (or an individual component)
does not return any output and “Wrong Answer”
class is when the provided output is incorrect.

To address RQ1, we introduce a scheme for gen-
erating explanations for the QA pipeline system.
This scheme produces shallow, however automatic

4Component is similar to Relation Linker of https://
github.com/dice-group/NLIWOD

5Component is based on https://github.com/
dice-group/NLIWOD and (Unger et al., 2012).

explanations using a semi-supervised approach for
generating individual explanations after running
each integrated component. In our proposed model,
the class of the output of each integrated com-
ponent is predicted using a supervised learning
approach. We train a classifier per component
within the pipeline. Then based on the prediction
of the classifier, an explanation template is chosen.
The explanation template and the output of the
component are incorporated to form the final rep-
resentation of explanations. We have a repository
of explanation templates for each component of the
QA pipeline system. For example, the NED compo-
nent corresponds to several explanation templates
differing based on the number of the output entities.
Precisely, the explanation template when the NED
has one single entity is different from when it has
two or three. Moreover, the templates vary based
on the Part of Speach (POS) tag of the entities rec-
ognized in the input question. For example, Figure
1 shows a pipeline containing three components:
1) NED component: TagMe, 2) RL component:
RNLIWOD QB, and 3) QB component: NLIWOD
QB. Three classifiers were individually trained for
each component. In this example, for the given
question “Did Tesla win a nobel prize in physics?”
the classifiers predicted the class of “Success” for
NED and the class "No Answer" for RL and QB
components. Thus, the explanation templates corre-
sponding to the class of “success” for NED, and "No
Answer" for RL and QB are filtered. Then since the
NED component has two outputs, therefore, two
explanations were generated for NED, whereas the
remaining components show one explanation.

4.1 Predicting Output of Components

The set of necessary QA tasks formalized asT = {t1, t2, . . . , tn} such as NED, RL, and QB. Each
task (ti ∶ q∗ → q+) transforms a given representation
q∗ of a question q into another representation q+.
For example, NED and RL tasks transform the in-
put representation “What is the capital of Finland?”
into the representation “What is the dbo:capital
of dbr:Finland?”. The entire set of QA com-
ponents is denoted by C = {C1,C2, . . . ,Cm}. Each
component Cj solves one single QA task; Cti

j cor-
responds to the QA task ti in T implemented by Cj .
For example, RNLIWOD implements the relation
linking QA task, i.e. RNLIWODRL. Let ρ(Cj) de-
note the performance of a QA component, then our
key objective is to predict the likelihood of ρ(Cj)

4



Pipeline QA

NED

TagMe

RE

RNLIWOD

QA

NLIWOD
QB

 Answer: NULLQ1: Did Tesla win a nobel 
prize in physics?

X2: TAGME identifies the word Tesla as the subject in the
question. The subject is mapped to the DBpedia concept
dbr:Nicole Tesla.

X1: TAGME identifies the multiword "nobel prize in physics"
as the entity in the question. The entity is mapped to the
DBpedia concept dbr:Nobel Prize in Physics.

X3: RNLIWOD could not recognize any predicate in
the question, hence there is no mapping to any
concepts of the DBpedia knowledge graph.

X4: NLIWOD QB cannot formulate any query
to extract the final answer, and the answer to
this question is NULL

Figure 1: The QA pipeline generates the explanations in various stages of running; each explanation is generated
per output of each integrated component. The demonstrated pipeline contains three components, i.e., NED, RL,
and QB; the output(s) of each one is integrated into an explanation template and represented to the end user.

for a given representation q∗ of q, a task ti, and
an underlying knowledge graph λ. This is denoted
as Pr(ρ(Cj)∣q∗, ti,λ). In this work, we assume
a single knowledge graph (i.e. DBpedia); thus, λ
is considered a constant parameter that does not
impact the likelihood leading to:

Pr(ρ(Cj)∣q∗, ti) = Pr(ρ(Cj)∣q∗, ti,λ) (1)

Further, we assume that the given representation
q∗ is equal to the initial input representation q for
all the QA components, i.e. q∗ = q.

Solution Suppose we are given a set of NL ques-
tions Q with the detailed results of performance
for each component per task. We can then model
the prediction goal Pr(ρ(Cj)∣q, ti) as a supervised
learning problem on a training set, i.e. a set of
questions Q and a set of labels L representing
the performance of Cj for a question q and a task
ti. In other words, for each individual task ti and
component Cj , the purpose is to train a supervised
model that predicts the performance of the given
component Cj for a given question q and task ti
leveraging the training set. If ∣T ∣ = n and each
task is performed by m components, and the QA
pipeline integrates all the n ×m components, then
n ×m individual learning models have to be built
up.
Question Features. Since the input question q
has a textual representation, it is necessary to au-
tomatically extract suitable features, i.e. F(q) =( f1, . . . , fr). In order to obtain an abstract and con-
crete representation of NL questions, we reused
question features proposed by (Singh et al., 2018b,
2019) which impact the performance of the QA
systems. These features are: question length,
answer type (list, number, boolean), Wh-word

(who,what,which,etc.), and POS tags present in
a question. Please note, our contribution is not the
underlying Frankenstein framework, we reused it
for the completion of the approach. Our contribu-
tion is to add valid explanation to each step of the
QA pipeline, and empirical study to support our
hypothesis.

NED

Classifier Classifier Classifier

RE QA

Input 
Question

Explanation Explanation Explanation

 Answer

Explanation 
Templates

Figure 2: This figure sketches a top overview of our ap-
proach. There is a classifier for each component, which
predicts the output of the associated component. Also,
there is a repository of the explanation templates. Thus,
based on the prediction of the classifier and the actual
output of the component, a suitable template is filtered.
For final explanation, the output of the component was
incorporated into the template.

4.2 Methodology
Figure 2 shows the architecture of our approach.
Initially, a pipeline for a QA system is built up; in
our casewe used Frankenstein platform (Singh et al.,
2018b,a) to facilitate building up a pipeline. Please
note, we do not aim to build a new QA system and
reused an existing implementation. We extend the
Frankenstein QA pipeline as illustrated in Figure 2.
We rely on the best performing pipeline reported
in (Singh et al., 2018b) over LC-QuAD dataset
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(Trivedi et al., 2017). In addition, we manually
populated a repository of explanation templates.
For example, all the required explanation templates
for NED components are created for cases such as
templates for wrong answers, when components
produce no answer, and in the case of correct
answers. Similarly, the templates for other tasks
such as RE an QB were handcrafted. Please note
that these templates are generic, thereby they do not
depend on the employed component. For example,
if we integrate another NED component rather than
TagMe, there is no need to update the template
repositories. In the next step, we trained classifiers
based on the settings which will be presented in the
next section. Thus, when a new question arrives at
the pipeline, in addition to running the pipeline to
exploit the answer, our trained classifiers are also
executed. Then the predictions of the classifiers
lead us to choose appropriate templates from the
repositories. The filtered templates incorporate
the output of the components to produce salient
representations for NL explanations. The flow
of the explanations is represented to the end user
besides the final answer.
Templates for Explanation To support our

approach for explainable QA, we handcrafted
11 different templates for the explanation. We
create placeholders in the predefined templates
to verbalize the output of the QA components.
Consider the explanation provided in Figure 1.
The original template for explaining the output
of TagMe component is: TagMe identifies
the multiword X as the entity in the
question. The entity is mapped to the
DBpedia concept dbr:W. The placeholders
X and dbr:W are replaced accordingly for each
question if a classifier selects this template in its
prediction.

5 Experimental Study

We direct our experiment in response to our two
research questions (i.e., RQ1 and RQ2) respectively.
First, we pursue the following question “How effec-
tive is our approach for generating explanations?”
This evaluation implies the demonstration of the
success of our approach in generating proper expla-
nations. It quantitatively evaluates the effectiveness
of our approach. On the contrary, the second dis-
course of the experiment is anHCI study in response
to the question “How effective is the perception of
the end user on our explanations?” This experi-

ment qualitatively evaluates user perception based
on the human factors introduced earlier (cf. Section
1). In the following Subsections, we detail our
experimental setups, achieved results, and insights
over the outcomes of the evaluation.

5.1 Quantitative Evaluation
This experiment is concerned with the question
“How effective is our approach for generating expla-
nations?”. We measure the effectiveness in terms
of the preciseness of the explanations. Regarding
the architecture of our approach, choosing the right
explanation template depends on the prediction of
the classifiers. If classifiers precisely predict a
correct output for the underlying components, then
consequently, the right templates will be chosen.

0

20

40

60

80

TagMe RNLIWOD NLIWOD QB

Logestic Regression SVM RandomForest GaussianNB DecisionTree

Figure 3: This figure illustrates the accuracy of five
classifiers perQAcomponent: TagMe, RNLIWOD, and
NLIWOD QB. Logistic Regression classifier performs
best for all the components.

In other words, any flaw in the prediction leads
to a wrong template. Thus, here we present
the accuracy of our classifiers per component.
We consider three generic classes, namely Oc ={Success,NoAnswer,WrongAnswer} (cf. sec-
tion 4) for the outputs of individual components.
A benchmarking approach has been followed to
choose best classifier per task. We employ five
different classifiers (SVM, Logistic Regression,
Random Forest, Gaussian NB, and Decision Tree)
and calculated each classifier’s accuracy per com-
ponent. To train the classifiers per component, we
require to create a single dataset. The sample-set in
training is formed by considering questions of the
LC-QuAD dataset. To get the concrete representa-
tion of each question, we extracted the following
features: question length, headword(who, what,
how), answer types (boolean, number, list), and
POS tags. If a particular feature is present, we
consider the value 1; if not, then the value of that
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feature is 0 while representing the question. The
label set of the training datasets for a given com-
ponent was set up by measuring the micro F-Score
of every given question for 3,253 questions from
the LC-QuAD dataset. The F-score per question
is calculated by adopting the same methodology
proposed by (Singh et al., 2018b). We rely on 3,253
questions out of 5,000 questions of the LC-QuAD
dataset because the gold standard SPARQL queries
of the remaining 1,747 questions do not return any
answer from DBpedia endpoint (also reported by
(Azmy et al., 2018)). The classifier predicts if a
component can answer the question or not, and
trained using features extracted from the natural
language questions against the F score per question.
During the training phase, each classifier was tuned
with a range of regularization on the dataset. We
used the cross-validation approach with 10 folds on
the LC-QuAD dataset. We employ a QA pipeline
containing TagMe (Ferragina and Scaiella, 2010)
for entity disambiguation, RNLIWOD6 for relation
linking, and NLIWOD QB7 for SPARQL query
builder. Figure 3 reports the accuracy of five classi-
fiers (average of all classes). Furthermore, Table 2
reports the accuracy of the best classifier (Logistic
Regression in our case) for each component.

Component Accuracy

TagMe 0.64
RNLIWOD 0.60
NLIWODWB 0.49

Table 2: Accuracy of our multi-class classifier for
predicting type of explanation for each component.

Observations. We observe that the logistic re-
gression classifier performs best for predicting the
output of components. However, the accuracy of
the classifier is low as depicted in the Table 2.
(Singh et al., 2018b) report accuracy of binary
classifiers for TagMe, RNLIWOD, and NLIWOD
QB as 0.75, 0.72, and 0.65 respectively. When we
train multi-class classifiers (i.e., three classes) on
the same dataset, we observe a drop in the accu-
racy. The main reason for the low performance of
the classifiers is the low component accuracy (c.f.
Table 1)

6Component is similar to Relation Linker of https://
github.com/dice-group/NLIWOD

7Component is based on https://github.com/
dice-group/NLIWOD and (Unger et al., 2012).

5.2 User Perception Evaluation
In the second experiment, we pursue the following
research question: “How is the perception of end
user about explanations along the human factor
dimensions?” To respond to this question, we con-
duct the following experiment:
Experimental Setup: We perform a user study
to evaluate how the explanations impact user per-
ception. We aim at understanding user’s feed-
back on the following four parameters inspired by
(Ehsan et al., 2019; Ehsan and ark Riedl, 2019):
1) Adequate Justification: Does a user feel
the answer to a particular question is justified or
provided with the reasoning behind inferences of
the answer? 2) Education: Does the user feel ed-
ucated about the answer generation process so that
she may better understand the strengths and limita-
tions of the QA system? 3) User involvement:
Does the user feel involved in allowing the user
to add her knowledge and inference skills to the
complete decision process? 4) Acceptance: Do
explanations lead to a greater acceptance of the
QA system in future interactions? With respect to
the above criteria, we created an online survey to
collect user feedback. The survey embraces random
ten questions from our underlying dataset from a
variety of answer types such as questions with the
correct answer, incorrect answer, no answer (for
which classifiers predict correct templates). The
first part of the survey displays the questions to the
userwithout any explanation. In the second part, the
same ten questions, coupled with the explanations
generated by our approach, are displayed to the user.
The participants of the survey are asked to rate each
representation of question/answer based on the four
human factor dimensions (i.e., acceptance, justifica-
tion, user involvement, and education). The rating
scale is based on the Likert scale, which allows the
participants to express how much they agree or dis-
agree with a given statement (1:strongly disagree
– 5:strongly agree). We circulated the survey to
several channels of the co-authors’ network, such as
a graduate class of Semantic Web course, research
groups in the USA and Europe, along with scientific
mailing lists. Collectively we received responses
from 80 participants. Please note, the number of
participants is at par with the other explainable
studies such as (Ehsan et al., 2019).

Results and Insights. Figure 4 summarizes the
ratings of our user study. We evaluate the user
responses based on the four human factor dimen-
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sions: Adequate Justification, Education,
User involvement, and Acceptance. The sum-
mary of ratings for each dimension was captured
in one individual chart. The green bars show the
feedback over questions with provided explanations,
and on the contrary, red bars are aggregated over the
question with no explanation. The x-axis shows the
Likert scale. The Y-axis is the distribution of users
over the Likert scale for each class independently-
with explanation and without explanation. Overall
it shows a positive trend towards the agreement
with the following facts; the provided explanations
helped users to understand the underlying process
better, justify a particular answer, involve the user in
the complete process, and increase the acceptability
of the answers. The green bars are larger in positive
ratings, such as strongly agree.
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Figure 4: User perception Evaluation. The figure illus-
trates the comparative analysis of providing with and
without explanation to the user. We consider the mean
of all the responses. X-axis depicts the Likert scale (1
is strongly disagree, 5 is strongly agree). A clear trend
in user responses shows that across all four parameters,
there aremany answers towards disagreement or neutral
when no explanation is provided. In the case of expla-
nation, users feel involved, and responses are shifted
towards the agreement. Furthermore, users show more
trust in the acceptance of the answer when provided
with an explanation.

6 Discussion
In this paper, we focus on the challenge of explain-
able QA systems. We mainly target systems that
consume data from the KGs. These systems receive
a natural language question and then transform that
to a formal query. Our primary aim is to take the
initial steps to break down the full black-box QA
systems. Thus, we reuse an existing QA pipeline
systems since it already decompose the prominent

tasks of the QA systems and then integrate individ-
ual implementations for each QA task. We based
our approach and associated evaluation on the hy-
pothesis that every component integrated into the
pipeline should explain the output. It will edu-
cate and involve non-expert users and trigger them
to trust and accept the system. Our findings in
Section 5 support our hypothesis both on quantita-
tive and qualitative evaluation. The limitation of
our approach is that it heavily relies on the perfor-
mance of the components. In the case of having
low performing components, the accuracy of the
classifiers is also downgraded. Although, on the
one hand, this approach is shallow, one the other
hand it avoids exposing the user to overwhelming
details of the internal functionalities by showing
succinct and user-friendly explanations. (Hoffman
et al., 2017) noted that for improving the usability
of XAI systems, it is essential to combine theories
from social science and cognitive decision making
to validate the intuition of what constitutes a "good
explanation." Our work in this paper is limited to
predefined template based explanations, and does
not consider this aspect. Also, our work does not
focus on the explainability of the behavior of the em-
ployed classifier, and the explanations only justify
the final output of components.

7 Conclusion and Future Direction

In this paper, we proposed an approach that is auto-
matic and supervised for generating explanations
for a QA pipeline. Albeit simple, our approach in-
tuitively expressive for the end user. This approach
requires to train a classifier for every integrated
component, which is costly in case the components
are updated (new release) or replaced by a latest
outperforming component. Our proposed approach
induced in a QA pipeline of a modular framework
is the first attempt for explainable QA systems over
KGs. It paves the way for future contributions
in developing explainable QA systems over KGs.
Still, there are numerous rooms in this area that
require the attention of the research community –
for example, explanations regarding the quality of
data, or metadata, or credibility of data publishers.
Furthermore, recent attempts have been made to
provide explanations of machine learning models
(Guo et al., 2018). However, the inclusion of the
explanations in neural approaches for question an-
swering (such as in (Lukovnikov et al., 2017)) is still
an open research question, and we plan to extend
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our work in this direction. The concerning domain
of the system is also influential in explanations. for
example, biomedical or marketing domains require
various levels of details of explanations. In general,
all of these concerns affect the acceptance and trust
of the QA system by the end user. Our ambitious
vision is to provide personalized and contextualized
explanations, where the user feels more involved
and educated.
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Abstract

Collecting training data for semantic parsing
is a time-consuming and expensive task. As
a result, there is growing interest in industry
to reduce the number of annotations required
to train a semantic parser, both to cut down
on costs and to limit customer data handled
by annotators. In this paper, we propose un-
certainty and traffic-aware active learning, a
novel active learning method that uses model
confidence and utterance frequencies from cus-
tomer traffic to select utterances for annota-
tion. We show that our method significantly
outperforms baselines on an internal customer
dataset and the Facebook Task Oriented Pars-
ing (TOP) dataset. On our internal dataset, our
method achieves the same accuracy as random
sampling with 2,000 fewer annotations.

1 Introduction

Semantic parsing is the task of mapping natural
language to a machine-executable meaning repre-
sentation. Supervised semantic parsing models are
trained on corpora of natural language utterances
with annotated meaning representations. Collect-
ing these annotations is an expensive manual pro-
cess, usually requiring expert annotators who are
familiar with both the domain of utterances and the
target meaning representation language (e.g. SQL).

Active learning is a method for collecting train-
ing data when annotating is difficult or budgets
are limited (Settles, 2009). In active learning, an
algorithm selects examples from an unlabeled set
that are predicted to be more useful for the model
if labeled. These examples are annotated and the
model is retrained in an iterative process. The goal
of an active learner is to reach higher performance
faster than a random sampling baseline.

In this paper, we propose uncertainty and traffic-
aware active learning, a simple yet effective
method to improve a semantic parser. In our setup,

we assume access to a set of initially annotated
utterances and a large set of unlabeled utterances
from customer traffic. We show that by using a
combination of uncertainty and utterance frequency
from traffic, we can achieve significantly higher
performance than baselines on both an internal cus-
tomer dataset and on the Facebook Task Oriented
Parsing (TOP) dataset (Gupta et al., 2018).

2 Related Work

Active learning has been applied to various NLP
tasks (Zhou et al., 2010; Li et al., 2012; Shen et al.,
2017; Peshterliev et al., 2019; Chen et al., 2019).
Duong et al. (2018) presented one of the first works
on active learning for deep semantic parsing and
found that selecting low-confidence examples out-
performed random examples on two datasets but
failed on a third. Koshorek et al. (2019) experi-
mented with learning to actively-learn for semantic
parsing, a method where the active learner is a
learned model, but failed to see better performance
than random sampling. Ni et al. (2020) proposed a
framework where a weakly trained semantic parser
was allowed to actively select examples for extra su-
pervision. The authors found that selecting the least
confident of the incorrect examples led to the best
performance. Incorrect examples were identified
by executing the predicted query and comparing
the predicted answer with an expected answer. In
this paper, we experiment with using uncertainty
and utterance frequencies from customer traffic, a
feature often found in industry logs.

3 Uncertainty and Traffic-Aware Active
Learning

We propose uncertainty and traffic-aware active
learning for semantic parsing. Our method is in-
spired by Mehrotra and Yilmaz (2015), who pre-
sented an active learning method for ranking al-
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gorithms which selects examples that are both in-
formative to the model and representative of the
dataset. The authors found that including a repre-
sentativeness measure helped offset the tendency
of informativeness measures to select outliers. In
their paper, the authors measured informativeness
as permutation probability based on a committee of
ranking models, so a query where the most certain
committee member had the least confidence was
considered more informative. For representative-
ness, the authors used an LDA model to create a
feature vector for each query. If a query’s feature
vector had higher cosine similarity to the average
feature vector of all queries, the query was consid-
ered more representative.

In our method, we also use informativeness and
representativeness, but we introduce new ways to
measure both that can be applied to semantic pars-
ing tasks. For each utterance u in a set of unlabeled
utterances U, we calculate f(u), a sampling weight
associated with u, as:

f(u) = β
φ(u)∑

u∈U
φ(u)

+ (1− β)
ψ(u)∑

u∈U
ψ(u)

(1)

where φ(u) is the representativeness and ψ(u) is
the informativeness of u. We measure φ(u) as the
utterance frequency, calculated as the number of
times the utterance u appeared during a given time
window of traffic. We measure ψ(u) as 1 - our
model’s confidence on u. To calculate confidence,
we use perplexity per word, which is the inverse
probability of a model’s output normalized by the
number of words. We convert this perplexity into a
confidence score by scaling it to a value between
[0,1] using the function in Algorithm 1. The thresh-
old is set to 0.9, which was fine-tuned based on the
model’s accuracy in production. In this function,
confidence approaches 1 as perplexity approaches
0, confidence is 0.5 when perplexity is the thresh-
old, and confidence approaches 0 as perplexity ap-
proaches infinity. While this scaled perplexity is
not an exact measure of confidence, we found that
it was effective in our experiments.

Both φ(u) and ψ(u) are normalized by the sum of
all values of φ(u) and ψ(u). We use f(u) as a weight
on each utterance when sampling. Utterances that
maximize f(u) by having higher frequencies and
lower confidences are more likely to be selected.

The β is a fine-tunable term that weighs the ut-
terance frequency against the confidence. We man-

Algorithm 1: Perplexity to confidence
p← perplexity
if p > threshold: then

return 1 / (2 + (100 * (p - threshold)));
else

return 1 - 0.5 * (p / threshold);
end

ually fine-tuned β by training 9 models with differ-
ent values ranging from 0.1 to 0.9 and compared
performance in terms of exact-match accuracy. We
found that a β of 0.4 performed the best on our
internal dataset and a β of 0.5 performed the best
on TOP, and so we use these β values in this paper.

3.1 Semantic Parsing Model

The semantic parsing model we use to evaluate
our method is a reimplementation of the sequence-
to-sequence model with pointer generator network
proposed by Rongali et al. (2020), which achieved
state-of-the-art performance on Facebook TOP
(Gupta et al., 2018). We use a BERT-Base model
(Devlin et al., 2019) as the encoder and a trans-
former based on Vaswani et al. (2017) as the de-
coder. The encoder converts a sequence of words
into a sequence of embeddings. Then at each time
step, the decoder outputs either a symbol from the
output vocabulary or a pointer to an input token. A
final softmax layer provides a probability distribu-
tion over all actions, and beam search maximizes
the output sequence probability.

3.2 Compared Approaches

We compare our method to the following baselines.

RANDOM: Our random baseline randomly
samples utterances for annotation.

TRAFFIC-AWARE: Our traffic-aware baseline
uses utterance frequencies as a weight on each
utterance, prioritizing utterances asked more
often. In datasets containing duplicates, this
is equivalent to random sampling.

CLUSTERING: In our clustering baseline
(Kang et al., 2004; Ni et al., 2020), we com-
pute a RoBERTa (Liu et al., 2019) embed-
ding using sentence-transformers1 for each
utterance. We cluster the embeddings with

1https://github.com/UKPLab/
sentence-transformers
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Internal TOP

Train 10,000 500
Dev 2,000 4,032
Test 5,000 8,241
Unlabeled 100,000 13,680
Src Vocab 30,160 11,873
Tgt Vocab 5,400 116

Table 1: Details of the datasets. Train is the starting
training set in our experiments. Unlabeled is the set
from which additional training examples are sampled.

k-means and set the number of clusters to the
round’s budget (i.e. if our budget is 500 ut-
terances, we create 500 clusters). Then we
randomly sample 1 example per cluster.

LEAST CONFIDENCE: Our least confidence
baseline (Lewis and Catlett, 1994; Culotta and
McCallum, 2005) selects utterances with the
lowest model confidence.

MARGIN OF CONFIDENCE: Our margin
of confidence baseline (Settles and Craven,
2008) calculates the difference in confidence
between the top two predictions in an n-best
list. Large differences between the top two
predictions indicate there is a clear top predic-
tion, while small differences indicate greater
model uncertainty. We select the examples
with the smallest difference in confidence.

UNCERTAINTY-AWARE: A less deterministic
version of Least Confidence. We use 1 - model
confidence as a weight on each utterance, pri-
oritizing utterances with low confidence.

UNCERTAINTY + CORRECTNESS: Our uncer-
tainty + correctness baseline (Ni et al., 2020)
selects the most uncertain of the predictions
that are incorrect. In practice, there are sev-
eral ways to identify an incorrect prediction,
such as checking if 1) a query fails to execute,
2) a query executes but fails to answer, or 3)
a query executes but does not return the ex-
pected answer. In our experimental setup, we
use a more favorable setting by checking the
prediction against the expected representation.

4 Datasets

We run experiments on both an internal customer
dataset and the Facebook Task Oriented Parsing

Internal what is the capital of france,
is the capital of(@ptr5)

TOP Any accidents along Culver,
[IN:GET INFO TRAFFIC

@ptr0 @ptr1 @ptr2
[SL:LOCATION @ptr3]]

Table 2: Examples from the datasets. @ptrs are point-
ers to a source token. In the first example @ptr5 refers
to the 5th token in the source, “france”.

(TOP) dataset (Gupta et al., 2018). Details and
examples are shown in Tables 1 and 2.

Our internal dataset contains open-domain fac-
tual questions asked by customers to a commercial
voice assistant. The utterances are anonymized
and labeled with a meaning representation by an
internal high-precision rule-based system. We also
calculate a count for each utterance based on how
often the utterance was asked in a given period
of time. This dataset contains only unique utter-
ances, which prevents selecting the same utterance
multiple times for annotation.

To our knowledge, there is no public semantic
parsing dataset with question frequencies, and so
we use a modified version of TOP. TOP is a seman-
tic parsing dataset of 45k crowdsourced queries
about navigation and public events. These queries
are manually labeled with a meaning representation.
In order to create a measure of representativeness,
we assume that utterances with an exact-matched
meaning representation are semantically similar.
Utterances with meaning representations that ap-
pear more often are considered more representative.
We keep one utterance per exact-matched meaning
representation, and use the counts as a measure of
how popular this type of question is among users.
This is done for experimental purposes. In a real
setting without the labels, we could use alternate
measures of semantic similarity to identify more
popular questions.

5 Experiments

For controlled experimentation, we simulate active
learning by treating a subset of our data as unla-
beled. When an unlabeled example is selected, we
reveal the label and add it to the training set. All
our experiments are run on an Nvidia Tesla v100
16GB GPU and the results are reported as exact
match accuracy.
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Figure 1: Results of the experiments. Scores are calculated as exact-match accuracy. We only report relative
change in accuracy for the internal dataset. The shaded regions represent the standard error for each point.

5.1 Internal Dataset

For our internal dataset, we start with a base train-
ing set of 10,000 utterances and set an annotation
budget of 5,000 utterances. In each round, we sam-
ple 500 utterances from the unlabeled set, append
them with their labels to the training set, and fully
retrain the model. We repeat this for 10 rounds and
report results as an average over 5 runs.

The results are shown in terms of relative change
in exact-match accuracy in Figure 1a. Our method
initially has similar performance to uncertainty-
based baselines, but after Round 4, our method
outperforms all the baselines. Table 3 has results of
paired t-tests comparing our method to each base-
line. All the p-values are<0.05, showing statistical
significance. In particular, our method outperforms
random sampling. The examples picked by the first
6 rounds of uncertainty and traffic-aware sampling
(accuracy ∆7.0% at round 6) are as valuable as
the examples picked by all 10 rounds of random
sampling (accuracy ∆6.9% at round 10), saving on
the cost of 2,000 annotations.

To better understand these results, we inspected
examples selected by each method. We found that
although the traffic-aware method picked popu-
lar utterances, annotating many similar questions
had limited gains over time. On the other hand,
uncertainty-based approaches picked more diverse
examples, but since customer datasets can be noisy,
they were prone to picking outliers that were not as
useful to the model when annotated. By combining
frequency with uncertainty, our method was able to
prioritize popular but under-represented examples,
which were both interesting for customers and in-
teresting for the model, and this gave us the best
performance.

Baseline Internal TOP

Random p<.001 p=.01
Traffic-Aware p<.001 p=.008
Clustering p<.001 p=.01
Least Confidence p<.001 p=.02
Margin of Confidence p=.002 p=.004
Uncertainty-Aware p<.001 p=.02
Uncertainty + Correctness p=.001 p=.03

Table 3: Results of paired t-tests comparing our method
to each baseline. p<.05 is considered significant

5.2 TOP

We next ran experiments on TOP. Given that TOP
is a smaller and simpler dataset (e.g. target vocab
of 116 vs. 5,400), we start with a smaller base
training set of 500 examples and set an annotation
budget of 500 examples. In each round, we sample
100 examples from the unlabeled set, append them
with their labels to the training set, and fully retrain
the model. We see the effect of our method as early
as Round 1, so we stop after 5 rounds and report
results as an average over 5 runs.

The results are shown as exact-match accuracy
in Figure 1b and the p-values from paired t-tests
are in Table 3. These results again show that
our method significantly outperforms the baselines.
Even though the traffic weights in TOP are not from
customer traffic, traffic-aware sampling performs
almost as well as our method. This suggests that
MRL frequency is a helpful measure for this test set.
We also observe that some of our uncertainty-based
baselines perform worse than random sampling, in
contrast to our results on the internal dataset. We
hypothesize this could be because uncertainty is a
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less useful signal from models built with smaller
training sets (TOP: 500-1,000 training examples
vs. Internal: 10,000-15,000 training examples) or
because low confidence examples were less useful
for TOP’s test set. Uncertainty still provides some
advantage, however, as the combination with MRL
frequency leads to the best performance.

6 Conclusion

In this work, we present uncertainty and traffic-
aware active learning, a method that uses model
confidence and traffic frequency to improve a se-
mantic parsing model. We show that our method
significantly outperforms baselines on both an inter-
nal dataset and TOP. Our method achieves the same
precision as random sampling with 2,000 fewer an-
notations on our internal dataset. Based on our
results, we present our method as a way to improve
semantic parsers while reducing annotation costs
and limiting customer data shown to annotators.
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Abstract 

Task Oriented Parsing (TOP) attempts to 
map utterances to compositional requests, 
including multiple intents and their slots. 
Previous work focus on a tree-based 
hierarchical meaning representation, and 
applying constituency parsing techniques 
to address TOP. In this paper, we propose a 
new format of meaning representation that 
is more compact and amenable to 
sequence-to-sequence (seq-to-seq) models. 
A simple copy-augmented seq-to-seq 
parser is built and evaluated over a public 
TOP dataset, resulting in 3.44% 
improvement over prior best seq-to-seq 
parser (exact match accuracy), which is 
also comparable to constituency parsers’ 
performance1. 

1 Introduction 

Today, most virtual assistants like Alexa and Siri 
are task oriented dialog systems based on GUS 
architecture (Bobrow et al. 1977; Jurafsky and 
Martin. 2019). They parse users’ utterances to 
semantic frames composed of intents and slots.  An 
intent normally represents a web API call to some 
downstream domain application to fulfill certain 
task. Slots correspond to parameters required in 
web API calls. In this paper, the task of parsing 
utterances to semantic frames is called Task 
Oriented Parsing (TOP).  

Many prior work (Liu and Lane, 2016; Goyal et 
al. 2018) concentrate on parsing single-intent 
requests in which one utterance contains only one 
intent and its slots. Shah et al. (2018) proposes a 
hierarchical TOP representation to model the 
nested requests: one utterance contains multiple 
recursive intents and their slots. Figure 1.a shows 
an example of the hierarchical TOP representation, 
which is called base representation in this paper. 
Other than expressiveness, base representation also 
enjoys the easy annotation, efficient parsing and 
low adoption barrier in practice. Two types of 
models have been employed to perform TOP tasks: 
seq-to-seq models, and constituency parsing 

models (Dyer et al., 2016; Gaddy et al. 2018). It 
has been reported that the latter consistently 
outperforms the former, probably because 
constituency parsing algorithms are dedicated to 
serving tree-based representation by design, while 
seq-to-seq architecture are purposed to serve more 
generalized form of representations such as graph 
and logical form (Dong and Lapata, 2016; Jia and 
Liang 2016).  

In this paper we introduce a compact TOP 
representation, which has fewer tokens than base 
presentation. Further, we build a simple seq-to-seq 
model with attention-based copy mechanism to 
evaluate the effectiveness of the compact 
representation. Experimental results on a public 
TOP dataset show that this approach can 
significantly improve seq-to-seq parser’s inference 
performance and close its gap to current 
constituency parsers, who cannot handle the new 
TOP representation. 

2 Related Work 

Shah et al. (2018) proposes the hierarchical TOP 
representation and uses RNNG (Dyer et al., 2016), 
a standard transition-based constituency parsing 
algorithm, to build a TOP parser, which 
outperforms the baseline seq-to-seq parsers by 
2.64%. Einolghozati et al. (2018) further optimizes 
the RNNG parser using ensembling, contextual 
word embedding and language model re-ranking, 
leading to higher exact match accuracy. However, 
training a RNNG model is expensive and almost 
one-scale slower than training a seq-to-seq model. 
Later, Pasupat et al. (2019) presents a chart-based 
(constituency) TOP parser, and it can reach fast 
training and high inference accuracy 
simultaneously.  

3 Representation 

In base representation, words are terminals, and 
intents and slots are nonterminals. The root node is 
an intent, and an intent is allowed to be nested 
inside a slot. In addition, base representation 

        Improving Sequence-to-Sequence Semantic Parser  
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1. Source code is available at https://github.com/cxuan2019/Top 
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follows three constraints: 1. The top-level node 
must be an intent, 2. An intent can have words 
and/or slots as children, 3. A slot can have either 
words or an intent as children.  

 

 
Fig 1.a: Base Representation. Intents are prefixed with IN: and slots 
with SL:. 

 

 
Fig 1.b: LOTV Representation. All words are replaced with token ‘0’. 

 

 
Fig 1.c: Compact Representation. Words are either gone or replaced 
with word indexes. 

To simply seq-to-seq models, a single special 
token is used to replace multiple words in parses, 
which is called Limited Output Token Vocabulary 
(LOTV) representation (Shah et al., 2018). In the 
Figure 1.b, the special token used in LOTV 
representation is ‘0’. After using LOTV 
representation to substitute base representation, 
seq-to-seq model performs much better: almost 7% 
increase.  

Compact representation is based on two 
observations: 1. Direct child tokens under an intent 
node are unnecessary to final execution of API 
calls; 2. A span of continuous words in the leaf of 
base representation can be encoded as a pair of 
positional indexes of starting word and ending 
word in source utterance. Specifically, compact 
representation is defined as a tree: root node is an 
intent; an intent node has either child slot nodes or 
no child node; a slot node has one child: either an 
intent node or a pair of word indexes that encode a 
continuous word span. Figure 1.c shows an 
example of compact representation.  

Apparently, compact representation has fewer 
tokens than base representation and LOTV 

presentation. Its Vocabulary size is smaller than 
base representation, but bigger than LOTV 
representation.  

4 Data 

The TOP dataset2 is introduced in the work of 
Shah et al. (2018), and it covers two domains: 
navigation and events. The utterances contain three 
types of queries: navigation, events and navigation 
to events. There are total 44783 annotated 
utterances with 25 intents and 36 slots. Each 
utterance is annotated with a hierarchical meaning 
representation. About 30% of records have nested 
requests. Among these data, the median depth of 
the trees is 2.54, and median length of the 
utterances is 8.93 tokens.  

In this work, we remove the records that have 
IN:UNSUPPORTED intent from the dataset. After 
this, the dataset has 28414 training records, 4032 
validation records and 8241 test records, identical 
to (Pasupat et al., 2019). Original dataset uses base 
representation, and we convert them to LOTV 
representation and compact representation. 
Average token lengths of LOTV and compact 
representations are 17 and 12; their vocabulary 
sizes are 60 and 93 respectively. Table 1 presents 
more statistics about the final dataset. 

5 Model 

We use a simple seq-to-seq with attention neural 
architecture to frame the TOP problem. Encoder is 
one-layer bi-directional recurrent neural network 
with LSTM (Hochreiter and Schmidhuber, 1997). 
The final output hidden states of both directions are 
concatenated and projected to the first input state 
of decoder through a linear layer. In decoder, 
attention and output token at time step t are 
computed as below: 

         𝑧! = [𝑒𝑚𝑏𝑒𝑑(𝑦!"#);	𝑜!"#]              (1) 
																	ℎ!"# , 𝑐!"# = 𝐿𝑆𝑇𝑀(𝑧$ , ℎ$%&!"# , 𝑐$%&!"#)									(2) 

	𝑒$ = (ℎ$!"#)'𝑊($$)*+,ℎ"-#																							(3)	
												α$ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑒$)																																			(4)	
												𝑎$ = ∑ α$,/ℎ/"-#	0

/ 																																						(5)	
												𝑢! = [ℎ"#$%; 	𝑎!]																															(6)	
												𝑜$ = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑇𝑎𝑛ℎ(𝑊1	𝑢$))															(7)	
												𝑦$ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2+#(3𝑜$)																						(8)	

Where 𝑦 is output token, ℎ, 𝑐 are hidden state and 
context, α is attention score, 𝑎 is attention, 𝑜 is 
combined output. 𝑊($$)*+, and 𝑊1 are trainable 
parameters.  

2. TOP dataset is available at http://fb.me/semanticparsingdialog 
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To better predict the word indexes in compact 

representation, we implement an attention-based 
copy mechanism, introduced by Eric and Manning 
(2017). First, we define the largest word index 
(utterance length) as system parameter and expand 
the decoder’s vocabulary to include all word 
indexes from zero to the largest word index; then 
we modify the formula (6) to directly add the 
attention score α to compute the output tokens as 
below:  

𝑢𝑡 = [ℎ𝑖
𝑒𝑛𝑐; 	𝑎𝑡; 	α𝑡] 

Here, attention score is padded to the largest word 
index. The addition of attention score can provide 
useful signals to decoder to improve its prediction 
on word indexes.   

We call the original model (without copy 
mechanism) as vanilla seq-to-seq, and the model 
with copy mechanism as copy-augmented seq-to-
seq. In this paper, we make two hypotheses: 1. TOP 
parsers should benefit the shorten parses of 
compact representation and produce better 
inductive bias than LOTV representation despite 
the increase of token vocabulary size; 2. Copy 
mechanism should boost the prediction 
performance of seq-to-seq model.  

 
Fig 2: Examples of four representations in text format. 

6 Evaluation 

6.1 Representations 

As mentioned before, with seq-to-seq model, 
LOTV representation can outperform base 
representation by large margin, so we exclude the 
base representation from the experiment. Besides 
LOTV and compact representations, we introduce 
two additional representations: single-word-index 
compact representation and sketch. In compact 
representation, a slot’s content is denoted as a pair 
of word indexes, and it can be further reduced to a 
single word index for those slots that have exactly 
one word in its content. We would like to find out 
if this further token-size decrease by single-word-
index compact representation can produce more 
inferencing benefits than compact representation. 

As LOTV, compact and single-word-index 
compact representations share the same tree 
skeleton (nonterminal nodes) and only differ in 
leaves (terminal nodes), we extract the tree 
skeleton as a standalone representation, called 
sketch. We think studying sketch representation 
can help better understanding the nonterminal and 
terminal’s contributions to prediction overheads 
among peer representations. Note that translating 
to a sketch parse cannot accomplish a TOP task by 
itself, as the parse has no slot contents (web API 
parameters). The sketch idea is inspired by Dong 
and Lapata (2018). Figure 2 shows an example of 
four representations in the experiment. Statistics of 
token lengths and vocabulary sizes of the 
representations are presented in Table 1. 

Reps 
Non-

terminal 
Len 

Terminal 
Len 

Total 
Len 

Vocab 
Size 

LOTV 8 9 17 60 
Compact 8 4 12 93 

Sig-wrd-idx 
Compact 8 3 11 93 

Sketch 8 0 8 59 
 
Table 1: Average token lengths of four representations in test dataset 
(right bracket is counted as nonterminal) 

6.2 Configurations 

We use vanilla seq-to-seq model with LOTV 
representation as baseline and compare it with four 
other configurations: vanilla seq-to-seq model with 
compact representation; copy-augmented seq-to-
seq model with compact representation; copy-
augmented seq-to-seq model with single-word-
index compact representation; and vanilla seq-to-
seq with sketch representation. We choose exact 
match accuracy as metrics in this work, which is 
percentage of full trees that are correctly predicted.   

6.3 Hyperparameters 

Similar to previous TOP work, we use pre-trained 
200b GloVe embeddings (Pennington at el. 2014). To 
make comparison fair, we ensure all four 
configurations share almost same set of hyper 
parameters:  fixed random seed, batch size is 32; 
source input embedding size is 200; target input 
embedding size is 128; both encoder and decoder 
hidden size are 512; drop out value is 0.5; using 
Adam optimizer (Kingma and Ba, 2014) with 
learning rate 0.001 and decay rate 0.5; using cross 
entropy as loss function; running 50 epochs with 
early stops; top 2 beam search in inference. 
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6.4 Results 

The main results are shown in Table 2. It can be 
observed that configuration 2 clearly outperforms 
configuration 1 by 2.61%, which confirms the first 
hypotheses: shorter token sequences are easier to 
learn and inference than longer token sequences, 
even with bigger-size vocabulary. One explanation 
is that compact representation has small 
vocabulary size (94), and seq-to-seq model is 
complex and powerful enough to accommodate the 
small increase of vocabulary size such that the 
performance of token prediction doesn’t drop 
much. On the other hand, the longer token 
sequence makes the probability of exact match get 
worse quickly due to compounding conditional 
probabilities in a series of token predictions  

Config 
ID 

 
Model 

 

 
Reps 

 
Acc Time 

(Sec) 

1 
Vanilla 

Seq2seq LOTV 78.41 35 

2 
Vanilla 

Seq2seq Compact 81.02 34 

3 

Copy-
augmented 

Seq2seq Compact 81.68 35 

4 

Copy-
augmented 

Seq2seq 
Sig-wrd-idx 

Compact 81.06 33 

5 
Vanilla 

Seq2seq Sketch 84.03 28 

6 
RNNG 
Parser Base 80.63 - 

7 
Span-based  

Parser Base 81.80 - 
Table 2. Exact match accuracies and training time per epoch of five 
configurations and two constituency parsers. 

The configuration 3 performs better than the 
configuration 2 with edge of 0.66%, which 
confirms the second hypotheses: copy mechanism 
helps improving the word index prediction. 
Originally, learning word indexes requires model 
to have certain reasoning capability: connecting a 
‘word index’ token to actual position in source 
utterance. In general, neural network is good at 
pattern recognition and but weak in reasoning. 
Copy mechanism can reduce the reasoning barrier 
and allows more leverage of neural network’s 
strength in pattern recognition.  

Comparing with compact representation, single-
word-index compact representation has shorter 
token length, but its prediction performance gets 
worse, as observed in configuration 4’s result. One 
possible reason is that compact representation has 
more predictable (word index) token occurrence 

pattern: its word index tokens always show up in 
pair right after a slot token, while single-word-
index compact representation may have one or two 
word index tokens after a slot token, making tokens 
more unpredictable. 

The configuration 5’s result reveals the upper 
bound of other four configurations. The gap 
between configuration 3 and 5 is relatively small 
(2.35%), so we think the future research should pay 
more attention to improving the sketch’s 
prediction, which is 84.03% at the point. Last, it 
can be seen that configuration 2, 3 and 4’s accuracy 
results are comparable to two constituency parsers 
(Shah et al., 2018; Pasupat et al., 2019).  

Config 
ID 

Nonterminal 
Errors 

Terminal 
Errors 

Total 
Errors 

1 1553 1188 1779 
2 1300 971 1564 
3 1243 945 1510 
4 1293 987 1561 
5 1316 0 1316 

Table 3. Error counts of five configurations. 

Error analysis. We count three types of 
inference errors in test dataset: nonterminal 
sequence (sketch) match errors; terminal sequence 
match errors; all token sequence match errors. 
When computing terminal sequence errors, 
consecutive terminals in a span are concatenated 
and treated as a single token. The result is listed in 
Table 3. Other than re-confirming the observations 
and arguments mentioned above, we have two new 
findings: 1. the copy mechanism seems able to 
boost both terminal and nonterminal inferences at 
same time (based on configuration 2 and 3’s 
results). This is probably caused by the fact that 
decoder also gets some helpful clues from attention 
scores when predicting nonterminal tokens; 2. 
Compact representation (configuration 2 and 3) 
have less nonterminal errors than sketch 
representation (configuration 5). One possible 
explanation is that terminal (word index) token 
adds more contexts when predicting nonterminal 
tokens, e.g., if previous token is a word index, then 
current token cannot be intent, which narrows 
down the scope of token prediction. 

7 Conclusions 

In this paper, we propose a compact 
representation for TOP, which is more friendly to 
seq-to-seq parsers and demonstrates better 
performance than base representation and LOTV 
representation. It opens up another door to improve 
the semantic parsing for task oriented dialog. 
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Abstract

Our goal is to create an interactive natural
language interface that efficiently and reli-
ably learns from users to complete tasks in
simulated robotics settings. We introduce a
neural semantic parsing system that learns
new high-level abstractions through decompo-
sition: users interactively teach the system
by breaking down high-level utterances de-
scribing novel behavior into low-level steps
that it can understand. Unfortunately, existing
methods either rely on grammars which parse
sentences with limited flexibility, or neural
sequence-to-sequence models that do not learn
efficiently or reliably from individual exam-
ples. Our approach bridges this gap, demon-
strating the flexibility of modern neural sys-
tems, as well as the one-shot reliable gen-
eralization of grammar-based methods. Our
crowdsourced interactive experiments suggest
that over time, users complete complex tasks
more efficiently while using our system by
leveraging what they just taught. At the same
time, getting users to trust the system enough
to be incentivized to teach high-level utter-
ances is still an ongoing challenge. We end
with a discussion of some of the obstacles we
need to overcome to fully realize the potential
of the interactive paradigm.

1 Introduction

As robots are deployed in collaborative applications
like healthcare and household assistance (Scassel-
lati et al., 2012; Knepper et al., 2013), there is a
growing need for reliable human-robot communi-
cation. One such communication modality that is
both user-friendly and versatile is natural language;
to this end, we focus on robust natural language
interfaces (NLIs) that can map utterances to ex-
ecutable behavior (Tellex et al., 2011; Artzi and
Zettlemoyer, 2013; Thomason et al., 2015; Aru-
mugam et al., 2017; Shridhar et al., 2020).

Interaction Teaching
Wash the coffee mug

Online Learning

Go to the mug and pick it up

Go to the sink and put it inside

Turn on the faucet

Turn it off

Pick up the mug

I’m sorry - I don’t understand!

GOTO Mug; PICKUP Mug

GOTO Sink; PUT Mug Sink

TOGGLE Faucet

PICKUP Mug

Wash the coffee mug

GOTO Mug; PICKUP Mug

GOTO Sink; PUT Mug Sink

TOGGLE Faucet

TOGGLE Faucet

PICKUP Mug

Only the 
corresponding 
actions are 
part of the 
decomposition.

Model

Users decompose high-level  
utterances into spans of  
low-level actions.

Historical  
Interaction Data 

(Single-User)

TOGGLE Faucet

Figure 1: In our proposed framework, users interact
with a simulated robot to complete tasks. Central to
our approach is learning by decomposition: users teach
the system to understand novel high-level utterances by
breaking them down into utterances that the system can
understand and execute. Using these decompositions,
we update a semantic parser online, allowing our sys-
tem to adapt to users as they complete more tasks.

Most existing work on NLIs (and AI systems
more broadly) falls into a static train-then-deploy
paradigm: models are first trained on large datasets
of (language, action) pairs and then deployed, with
the hope they will reliably generalize to new utter-
ances. Yet, what happens when such models make
mistakes or are faced with types of utterances un-
seen at training — for example, providing a house-
hold robot with a novel utterance like “wash the
coffee mug?” Such static systems will fail with no
way to recover, burdening the user to find alternate
utterances to accomplish the task (or give up). In-
stead, we argue that NLIs need to be dynamic and
adaptive, learning interactively from user feedback
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High-Level Task 1  
Clean & Place (Mug, CounterTop)  

High-Level Task 2 
Clean & Place (Tomato, DiningTable)  

“Wash the coffee mug” —> I’m sorry - I don’t understand!

”Go to the mug and pick it up” —> GOTO Mug; PICKUP Mug

”Go to the sink and put it inside” —> GOTO Sink; PUT Mug Sink

”Turn on the faucet” —> TOGGLE Faucet

”Turn it off” —> TOGGLE Faucet

”Pick up the mug” —> PICKUP Mug

“Place it on the counter” —> I’m sorry - I don’t understand!

”Go to the counter” —> GOTO CounterTop

”Put the mug on the counter” —> PUT Mug CounterTop

“Clean and put the tomato on the table” —>  
                                                 I’m sorry - I don’t understand!

“Wash the tomato” —> 
GOTO Tomato; PICKUP Tomato;
GOTO Sink; PUT Tomato Sink;  
TOGGLE Faucet;
TOGGLE Faucet;

“Pick up the tomato” —> PICKUP Tomato

“Place the tomato on the table” —> 
GOTO DiningTable;  
PUT Tomato DiningTable;

One-Shot 
Generalization

Teaching

Figure 2: One-shot generalization example: When the system fails to understand an utterance (e.g. “wash the
coffee mug”, “place it on the counter”), the user teaches the system by decomposing it into other utterances the
system can understand (illustrated by brackets above), which eventually get mapped to low-level actions that are
executed. This induced mapping of high-level utterance to low-level actions forms an example that we use to
update our semantic parser online. Because our semantic parser is capable of reliable one-shot generalization,
users can leverage these decompositions when completing the next task.

to index and perform more complicated behaviors.
In this work, we explore building NLIs for simu-

lated robotics that learn from real humans. Inspired
by Wang et al. (2017), we leverage the idea of learn-
ing from decomposition to learn new abstractions.
Just like how a human interactively teaches a new
task to a friend by breaking it down, users interac-
tively teach our system by simplifying utterances
that the system cannot understand (e.g. “wash the
coffee mug”) into lower-level utterances that it can
(e.g. “go to the coffee mug and pick it up”, “go to
the sink and put it inside”, etc. — see Figure 1).

To map language to executable behavior, Wang
et al. (2017) and Thomason et al. (2019) built adap-
tive NLIs that leverage grammar-based parsers that
allow reliable one-shot generalization but lack lexi-
cal flexibility. For example, a grammar-based sys-
tem that understands how to “wash the coffee mug”
may not generalize to “clean the mug.” Meanwhile,
recent semantic parsers are based primarily on neu-
ral sequence-to-sequence models (Dong and Lap-
ata, 2016; Jia and Liang, 2016; Guu et al., 2017).
While these models excel from a lexical flexibility
perspective, they lack the ability to perform reliable
one-shot generalization: it is difficult to train them
to generalize from individual examples (Koehn and
Knowles, 2017).

In this paper we propose a new interactive NLI
that is lexically flexible and can reliably and effi-
ciently perform one-shot generalization. We in-
troduce a novel exemplar-based neural network
semantic parser that first abstracts away entities
(e.g. “wash the coffee mug”→ “wash the<obj>”),

allowing for generalization to previously taught
utterances with novel object combinations. Our
parser then retrieves the corresponding “lifted” ut-
terance and respective program (exemplar) from
the training examples based on a learned metric
(implemented as a neural network), giving us the
lexical flexibility of sequence-to-sequence models.

We demonstrate the efficacy of our learning from
decomposition framework through a set of human-
in-the-loop experiments where crowdworkers use
our NLI to solve a suite of simulated robotics tasks
in household environments. Crucially, after com-
pleting a task, we update the semantic parser so
that users can immediately reuse what they taught.
We show that over time, users are able to complete
complex tasks (requiring several steps) more effi-
ciently with our exemplar-based method compared
to a neural sequence-to-sequence baseline. How-
ever, for more straightforward tasks that can be
completed in fewer steps, we see similar perfor-
mance to the baseline. We end with an error anal-
ysis and discussion of user trust and incentives in
the context of building interactive semantic parsing
systems, paving the way for future work that better
realizes the potential of the interactive paradigm.

2 Learning from Decomposition

User sessions are broken up into a sequence of
episodes (individual tasks), each comprised of two
phases: 1) Interaction, where the user provides
utterances to the system to accomplish the task,
and 2) Teaching, where the user teaches the system
to understand novel utterances (Figures 1 and 2).
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Primitive Action Canonical Utterance

GOTO <OBJ> go to <obj>
PICKUP <OBJ> pick up <obj>
OPEN <OBJ> open <obj>
CLOSE <OBJ> close <obj>
TOGGLE <OBJ> turn on/off <obj>
PUT <OBJ> <OBJ> put object <obj>

Table 1: List of primitive programmatic actions and
seed utterances used to initialize our semantic parser.
Note that the utterances are lifted; they do not include
references to concrete objects. This enables one-shot
generalization to unseen object combinations.

2.1 Interaction

During interaction, the user attempts to complete
a task by producing a sequence of user utter-
ances u1, u2, . . . with the corresponding system
responses p1, p2, . . . (including the NOT-SURE ac-
tion) that are executed in the environment (the
NOT-SURE action executes to an error message
“I’m sorry - I don’t understand!”). For example,
in Figure 1, the user first says the novel utter-
ance “wash the coffee mug,” and the system returns
NOT-SURE. The user follows up with “go to the
mug and pick it up,” which the system maps to the
program GOTO Mug; PICKUP Mug. This con-
tinues until the user has completed the task. If the
system or user makes a mistake and produces an
undesired action, the user must continue to provide
utterances, as there are no resets.

2.2 Teaching

The goal of teaching is to convert the sequence of
utterance-action pairs (ui, pi) into a set of valid
training examples for updating the system. To
do this, the system presents the user with each
ui where pi is NOT-SURE, and asks the user
to select the corresponding contiguous sequence
of actions pi+1, . . . pj . To facilitate comprehen-
sion, we show users (programatically generated)
human-readable representations of each action p
— e.g. “go to the mug” for a program p = GOTO
Mug. For example, the user maps “wash the cof-
fee mug” to the sequence GOTO Mug; PICKUP
Mug; . . . TOGGLE Faucet (see Figure 1 for
the full decomposition). Similarly, the user maps
“place it on the counter” to GOTO CounterTop;
PUT Mug CounterTop. The resulting exam-
ples (ui, p̂i = pi+1 . . . pj) are used to update the
system (details in Section 3.2.2). We update every

time a user completes a task and teaches new exam-
ples — this allows users to access what they have
taught immediately, during the following task.

2.3 Desiderata
This example illustrates two desiderata for our
framework, both of which are key to trust: 1) the
ability to identify novel types of utterances (when
to output NOT-SURE), as well as 2) the ability to
perform one-shot generalization. Knowing when
to output NOT-SURE is key to trust during infer-
ence: signaling to users what the system knows,
so that the simulated robot does not take unde-
sired actions (like dropping your coffee mug on the
floor). Performing one-shot generalization is key
to trust during learning: users need to rely on the
system remembering what has been taught so they
can more efficiently complete future tasks. For ex-
ample, when the user is completing the next task
(second half of Figure 1), they should be able to
rely on the system understanding “wash the tomato”
and “place the tomato on the table,” even though
these refer to different objects than in the taught
examples. Section 3 discusses how we enable one-
shot generalization in further detail.

Sequence-to-sequence models fail. We found
modern neural sequence-to-sequence models to be
a poor fit in our setting. The biggest problem we
found was their ability to handle novel utterances.
Anecdotally, we found when given the novel ut-
terance “wash the coffee mug,” a neural sequence-
to-sequence system trained on the seed set of ut-
terances in Table 1 returned the program OPEN
Mug, which does not even execute. These prob-
lems are exacerbated by the lack of training data;
a single user’s interaction only creates a handful
of new examples, contraindicating the use of data-
hungry sequence-to-sequence models (Koehn and
Knowles, 2017).

3 Semantic Parsing

To address the above desiderata (identifying when
to output NOT-SURE, and one-shot generaliza-
tion), we incorporate two key insights into our ap-
proach. To identify when to output NOT-SURE,
we look at the distances between a new utterance
and the utterances in our training set, similar to
the exemplar-based approach of Papernot and Mc-
Daniel (2018) — if an utterance is “close enough”
to a training utterance, return the corresponding
program, otherwise return NOT-SURE. To enable

25



one-shot generalization, our parser operates over
lifted versions of utterances and programs — ver-
sions that abstract out explicit references to objects
(allowing for automatic generalization to new com-
binations of objects unseen during training).

We now describe our semantic parser, which
maps a user utterance u and environment state s
to the corresponding program p that best reflects
the meaning of the user’s utterance. In this work, a
state s consists of a set of objects where each object
is defined by a fixed set of features (e.g. visibility,
toggle status, etc.). We define a program p as a
sequence of primitive actions, where each action
consists of a template (from Table 1) with argu-
ments corresponding to object types. We conclude
with a description of how we retrain our semantic
parser using the newly taught examples from the
teaching phase (Section 2.2).

3.1 Model

Our semantic parser (Figure 3) takes an utterance
u and first abstracts out entities (Section 3.1.1), cre-
ating object references and lifted utterances. We
parse these into object types (Section 3.1.1) and
lifted programs (Section 3.1.2), which are com-
bined (Section 3.1.3) and fed to a reranker that
additionally uses the state s (Section 3.1.4) to iden-
tify the program p∗ to execute.

3.1.1 Entity Abstraction & Resolution
We define an entity abstractor that maps an utter-
ance u (e.g. “wash the coffee mug”) to a lifted
utterance f (e.g. “wash the <obj>”) and a list of
object references O (e.g. [“coffee mug”]). The en-
tity resolver maps each object reference o ∈ O
(e.g. “coffee mug”) to a grounded object type
g (e.g. Mug) resulting in a new list G. To do
this, we exploit a set of “typical names,” (e.g.
Mug = {“coffee mug”, “mug”, “cup”}) that we
define a priori, looking up the object type with
the given name. However, if there are multiple
types that share the given name (e.g. in our dataset,
table is a “typical name” for DiningTable,
CoffeeTable, SideTable), we use the cur-
rent state s to disambiguate: we fetch all the match-
ing items in s and return the physically closest one.

3.1.2 Semantic Parsing
Central to our approach is the exemplar-based se-
mantic parser that maps a lifted utterance f to a
set of lifted programs Q. To do this, we learn a
classifier pθ that takes two lifted utterances (f, f ′)

“Wash the coffee mug”

“coffee mug”“Wash the <object>”

GOTO <OBJ_0>; PICKUP <OBJ_0>
GOTO Sink; PUT <OBJ_0> Sink
TOGGLE Faucet; TOGGLE Faucet

OBJ_0: Mug

 

Mug: Visible, inInventory
Sink: Visible, isReceptacle

Semantic Parsing Entity Resolution

Combination

Entity Abstraction

PUT Mug Sink; TOGGLE Faucet; TOGGLE Faucet

Re-Ranking

Execution

PUT <OBJ_0> Sink
TOGGLE Faucet; TOGGLE Faucet

GOTO Mug; PICKUP Mug
GOTO Sink; PUT Mug Sink
TOGGLE Faucet; TOGGLE Faucet

PUT Mug Sink
TOGGLE Faucet; TOGGLE Faucet

State: 

Figure 3: Semantic parsing pipeline. First, entities are
extracted and the corresponding outputs — the lifted
utterance and object references — are parsed into pro-
grams and grounded object types. These are combined
and re-ranked to identify the program to execute.

and predicts a probability whether they have the
same lifted program (q = q′). We take Q to be the
programs corresponding to the highest probability
f ′ under pθ.

Embedding Utterances. We first embed each
utterance with an embedding function φ, imple-
mented as a neural network that first uses GloVe
(Pennington et al., 2014) to embed the words in
f followed by position encoding similar to that
used in Vaswani et al. (2017) and a nonlinear trans-
form. The resulting embeddings are summed and
fed into to a two-layer MLP to create the utter-
ance embedding φ(f). The classifier pθ outputs
σ(a cos-sim(φ(f), φ(f ′)) + b), where cos-sim is
cosine similarity, a, b are learned scalars, and σ is
the sigmoid function. We train pθ with a binary
cross-entropy objective on a training set of (lifted
utterance, lifted program) pairs: {(fi, fj , [qi =
qj ]) : i, j ∈ [n]}.

Efficient Inference. We now describe how we
use pθ for inference given a new lifted utterance f ′.
Unfortunately, naı̈ve application of pθ for a new f ′

requires pairwise comparison with every training
example. We streamline this by using the struc-
ture of our embedding space — as the classifier
outputs the scaled cosine similarity between two
utterances, we store the embeddings φ(fi) for each
training utterance (fi, qi) in our dataset, then use
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an approximate nearest neighbors algorithm to find
the the set of utterances that are “close-enough”;
we use the corresponding lifted programs to form
the output set Q. We formalize what it means for
an utterance to be “close-enough” in the following
paragraph. We note that this procedure is similar
to COSINEBERT (Mussman et al., 2020), a model
used for active learning on pairwise language tasks.

Setting a Threshold. One of the desiderata of
our system is returning NOT-SURE for utterances
it is not confident about. To do this, we set a
threshold τ such that if ‖φ(f)− φ(f ′)‖2 ≥ τ , re-
turn NOT-SURE. Note that this is equivalent to to
thresholding the probability output by pθ which is
monotonic in the cosine distance as defined above.
We set this threshold using a held-out validation set
of (utterance, program) pairs (defined based solely
on the seed examples in Table 1). For each utter-
ance in the validation set f , we set τ such that 90%
of the programs corresponding to utterances with τ
are correct. Given an utterance f ′ at test time, we
return the set of lifted programs Q corresponding
to all lifted utterances within τ of φ(f ′) (all lifted
utterances “close enough” to f ′).

Handling Compositionality. For multi-action
utterances (e.g. “go to the apple and pick it up”)
we heuristically split on the keyword “and,” result-
ing in multiple substrings. We parse each substring
obtaining subsets of lifted programs, and take the
cross-product of these subsets as the final set Q.
We acknowledge that this is not a perfect heuristic;
in future work we hope to explore more general
extensions that allow us to efficiently interpret ut-
terances that have been composed in this way.

Implementation Details. When identifying the
threshold τ , we define a hyperparameter lower
bound β; this lower bound ensures that our se-
mantic parser isn’t overly conservative (returning
NOT-SURE despite being moderately confident
about the set of candidate programs). We find a
value β = 0.15 works well for our experiments.
We use Spotify’s annoy library as our approxi-
mate nearest neighbors store for fast lookups.

We initialize our exemplar-based parser with
seed examples (utterances mapped to programs)
that cover the set of actions. Table 1 shows these
actions, and a subset of the utterances used for train-
ing — our full dataset consists of only 44 examples
(minor variations of the trigger words in the table).
This is similar to prior work that defines a set of

canonical utterances (Wang et al., 2015), or a core
grammar (Wang et al., 2017). We strip stop words
(the, up, down, on, off, of, in, to, then, a, an, back,
front, out, from, with, inside, outside, below, above,
top) from f prior to feeding to our parser to make
our model more robust to minor lexical variation.

3.1.3 Combination

We combine each lifted program q ∈ Q with the
grounded object types G to form a set of grounded
programs P = {p1, . . . , pk}. In general, given
a lifted program q that takes a sequence of argu-
ments (e.g PUT <OBJ> <OBJ>) and a list of ob-
ject types (e.g. G = [Mug, DiningTable]),
we simply substitute the object types into the pro-
gram, replacing each argument in the lifted pro-
gram. This results in a final grounded program (e.g.
p = PUT Mug DiningTable).

3.1.4 Reranking

The semantic parser, entity resolver, and combina-
tion step produce a set of grounded programs P .
The reranker takes the original utterance u, current
state s, and this set of grounded programs P and
chooses a single candidate p∗ ∈ P to execute.

As a first step, we discard candidate programs
that fail to execute in our simulator: for example,
PICKUP Mug is discarded if the robot is already
holding an object. Then we use a neural network
to produce a score for each pi ∈ P . This net-
work separately embeds the utterance, state, and
each candidate program, feeding the concatenated
embeddings to a two-layer MLP to produce a real-
valued score for each pi. In our work, the state s
is retrieved dynamically based on the grounded ob-
jects G returned by the entity resolver; the state is
made up of hand-coded features corresponding to
attributes like visibility, toggle status, and whether
it can be picked up, amongst others. We use a sim-
ilar scheme as the semantic parser (Section 3.1.2)
to encode utterances and candidate programs (em-
bed, position encode, and sum), and a simple linear
transformation to encode the bag-of-features repre-
senting the state s.

The highest-scoring candidate p∗ ∈ P is exe-
cuted. The reranker is trained via the process de-
scribed in Section 3.2.3 only after new examples
are taught by users during the teaching phase fol-
lowing each task they are asked to complete.
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3.2 Retraining from User Feedback

In the following subsections, we discuss how to
retrain our semantic parser and reranker to achieve
the second of the two desiderata desired of our
system: reliable and efficient one-shot generaliza-
tion. As input to the retraining procedure, we take
the dataset D̂ = (ui, p̂i) of newly taught examples
from the teaching phase (Section 2.2).

3.2.1 Creating Lifted Examples
Retraining the exemplar-based semantic parser
requires converting our grounded dataset D̂ to
pairs of lifted utterances and programs. Consider
the grounded example (“Place the tomato on the
table”, GOTO DiningTable; PUT Tomato
DiningTable); we want to map this to its lifted
form (“Place the <obj> on the <obj>”, GOTO
<OBJ> PUT <OBJ> <OBJ>). To do this, we
use the entity abstractor and resolver (from Section
3.1.1) to factor out object references.

Concretely, using the entity abstractor on the
above example leaves us with f̂ = “Place the
<obj> on the <obj>”, and references Ô =
[“tomato”, “dining table”], which the entity re-
solver maps to Ĝ = [Tomato, DiningTable].
We replace any element of G that occurs in the
original program with the generic <OBJ> token
to create the lifted program (q̂ = GOTO <OBJ>;
PUT <OBJ>). Applying this procedure to each
example in D̂ gives us our lifted examples (f̂ , q̂).

3.2.2 Updating the Semantic Parser
Updating the semantic parser requires optimizing
the binary cross-entropy objective from Section
3.1.2 using these lifted examples (f̂ , q̂). As we
train our parser from pairs of examples, and there
are far more negative examples (pairs with different
programs) than positives, we over-sample positive
examples so that batches have an equal number
of positives and negatives. We train on the en-
tire history of data for the given user, re-creating
the nearest neighbors store with embeddings of
each training utterance fi. After this step, we re-
calibrate the nearest neighbors threshold using the
procedure in Section 3.1.2.

3.2.3 Updating the Reranker
After updating the semantic parser, we re-parse
each utterance in our dataset to define our retrain-
ing dataset of (ûi, P̂i, ŝi) tuples. We use the pro-
gram p∗ that was actually executed for utterance ûi
in state ŝi as the “gold” label for the reranker. We

train the reranker by maximizing the log-likelihood
(minimizing the cross-entropy loss) of this candi-
date p∗ amongst the others.

4 Experiments

We evaluate our approach with a set of human-
in-the-loop experiments where crowdworkers are
tasked with solving a series of simulated robotics
tasks. Users interact with our system over 5
episodes (where each episode consists of a single
task), teaching our system new examples after suc-
cessfully completing each one. Each user has their
own individual semantic parser and re-ranker (mod-
els are not shared across the users), with both com-
ponents updating online after each teaching phase,
prior to the start of the next task. Updating the two
models (including rebuilding the nearest neighbors
store) after each teaching phase varies depending
on task complexity, but takes anywhere from 28
– 63 seconds on an Amazon EC2 T2.Medium (2
CPUs, 4 GiB RAM, no GPU) instance.

4.1 Experimental Setup

Environment and Tasks. Our experiments take
place in simulated household environments, with
users completing structured, everyday tasks. We
create a 2D web-client inspired by the AI2-THOR
Simulation Environment (Kolve et al., 2017) that
removes the 3D rendering and spatial layout, but
preserves the object types, attributes, and relations.

We borrow our tasks from the ALFRED Dataset
(Shridhar et al., 2020) that defines 7 task types: 1)
Pick and Place, 2) Pick Two Objects and Place, 3)
Look at Object in Light, 4) Nested Pick and Place,
5) Pick, Clean, and Place, 6) Pick, Heat, and Place,
and 7) Pick, Cool, and Place.

Interactive User Studies: We run our interac-
tive user studies via Amazon Mechanical Turk
(AMT). Each user is assigned one of the 7 task
types, and is asked to complete 5 tasks of that type
in a row. We recruited 20 workers per approach.
Workers were paid $5 with an average completion
time of 23 minutes. We limit our AMT studies to
workers with an approval rating ≥ 98%, location =
US, and a total number of completed HITs > 5000.

Baseline. We compare our approach with a neu-
ral sequence-to-sequence with attention model sim-
ilar to Jia and Liang (2016). To improve reliability,
if the user enters an utterance that can be handled
by a simple grammar that covers the core utterances
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Figure 4: Complete set of results across 20 users with 7 different task types. Each user is given a single task type,
and asked to complete 5 different episodes, with different combinations of environments and objects. The graph
on the left shows the number of examples taught over 5 episodes. The graph in the middle shows the per-turn
program complexity (number of primitives per language utterance) over time. The last graph shows the normalized
episode length (# utterances to solve task / number of actions required).

from Table 1, we return the resulting program; oth-
erwise, we invoke the sequence-to-sequence model.
We find the inclusion of such a grammar necessary
to prevent users from getting stuck. We refer to this
combination of a neural sequence-to-sequence with
a grammar as “seq2seq-grammar”, whereas we re-
fer to our system as “exemplar-based”. We keep
the learning by decomposition framework identical
for both our system and the sequence-to-sequence
system — in other words, we simply swap out our
exemplar-based neural parser described in Section
3.1.2 for the seq2seq-grammar model.

Metrics. We define three evaluation metrics:

1. Total number of examples taught: The num-
ber of unique (utterance, program) pairs that the
users teach the system across each teaching phase
(as described in Section 2.2). This number starts
at 44, the number of unique seed examples from
Table 1. Higher is better — this metric indicates
whether users are engaging with the system to teach
high-level abstractions; a flat curve means that the
users have finished teaching and are exploiting the
examples they have previously taught.

2. Per-turn program complexity: the number
of actions generated per utterance. For example,
an utterance that generates the program GOTO
Mug; PICKUP Mug; GOTO Sink; PUT
Mug Sink has complexity of 4 — one for each
primitive (NOT-SURE counts at 0). We expect
a steep upward trend in this metric over time as
users teach and reuse progressively more complex
examples.

3. Normalized episode length: the number of lan-
guage utterances the user provided divided by the
number of primitive actions required to solve the
task. This is the end-to-end metric we seek to op-
timize — values less than 1 indicate that users are
able to tap into what they have taught to complete
tasks in fewer steps.

4.2 Results

Full Results: 20 Users x 7 Tasks. Figure 4
presents graphs of the three metrics over the 5
episodes for each of the 20 users, split across the
7 different task. Error bars denote estimated stan-
dard deviation across all 20 users. Users of both
our exemplar-based system and the sequence-to-
sequence baseline teach a moderate number of new
examples over time, with an upwards trend in per-
turn program complexity as they complete more
tasks. Finally, we see a decreasing trend in the
normalized episode length, with the mean value of
our system dipping slightly below a value of 1 after
completing 5 instances.

Case Study: Pick, Cool, and Place. Figure 5,
on the other hand, presents graphs of the 3 met-
rics across 3 users for the Pick, Cool, and Place
task, one of the more complex tasks in our suite,
requiring at least 12 primitive utterances to com-
plete successfully (compared to tasks like Pick and
Place that only require 4). Here we see large gaps
between our system and the sequence-to-sequence
baseline — not only do users of our system teach
significantly more high-level examples, but they
have a much-higher per-turn program complexity
after 5 episodes compared to the baseline. Finally,
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Figure 5: Results for the Pick, Cool, and Place task across 3 users (subset of the original 20). This task is complex,
requiring at least 12 primitives to complete. Notice how the number of defined examples and per-turn program
complexity are much higher for our method, and that the normalized episode length is lower.

we see that after 5 episodes, the normalized episode
length is around 0.2, indicating that users are able
to complete the complex task in 1/5 the steps nec-
essary with our system.

Are users re-using high-level abstractions?
The general results in Figure 4 indicate that while
users are teaching the system new abstractions, they
are unfortunately not re-using them effectively. The
normalized episode length plot shows that both sys-
tems converge to 1, indicating that users are de-
faulting to the primitive actions, rather than trying
to teach higher-level examples. One possible expla-
nation for this is that for simpler tasks (e.g. Pick
and Place), it is perhaps easier and faster to pro-
vide low-level utterances (those in Table 1), rather
than teach new examples. Defaulting to low-level
utterances also explains the lack of a significant
gap between the sequence-to-sequence model and
our model — in light of low-level utterances, the
grammar does the heavy-lifting (in other words, we
would not be invoking the sequence-to-sequence
model at all). Indeed, across all 20 users for the
seq2seq-grammar model, 89.9% of successfully
parsed utterances (713 out of 793 total) were han-
dled by the grammar, with only 10.1% handled by
the seq2seq model (70 of 793 total).

However, this trend doesn’t hold true for more
complex tasks. Figure 5 shows that users are teach-
ing and reusing a significant number of examples,
completing tasks extremely efficiently. One hy-
pothesis is to correlate task complexity with ab-
straction reuse (and thus, the ease by which users
solve tasks), and while supported by the Pick, Cool,
and Place results (Figure 5), we would require
future experiments with a larger number of users

before we can draw meaningful conclusions.

5 Related Work

We build on a long tradition of learning semantic
parsers for mapping language to executable pro-
grams (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005, 2007; Liang et al., 2011), with a fo-
cus on using context and learning from interaction.

Contextual Semantic Parsing. In many set-
tings, successfully parsing an utterance requires
reasoning about both linguistic and environment
context. Artzi and Zettlemoyer (2013) developed
a model for parsing instructions in the SAIL Navi-
gation dataset (MacMahon et al., 2006; Chen and
Mooney, 2011) that leverages the environment con-
text. Later, Long et al. (2016) introduced the
SCONE Dataset, requiring building models that
can reason over both types of context. More re-
cently, Yu et al. (2019) introduced the large-scale
Conversational Text-to-SQL (CoSQL) dataset that
requires jointly reasoning over dialogue history and
databases to parse user queries to SQL. We han-
dle both linguistic context and environment con-
text in our work, by decoupling semantic parsing
from grounding; our lifted semantic parser handles
linguistic context, while our entity resolver and
reranker handle environment context.

Learning from Interaction. Closest to our work
is Voxelurn (Wang et al., 2017), and its close prede-
cessor SHRDLURN (Wang et al., 2016). Voxelurn
defined an open-ended environment where the goal
was to build arbitrary voxel structures using lan-
guage instructions. We take inspiration from its
teaching procedure where users decompose high-
level utterances into low-level actions in the context

30



of a grammar-based parser. Other work uses alter-
native modes of interaction to teach new behaviors.
Srivastava et al. (2017) used natural language ex-
planations to teach new concepts. Relatedly, Labu-
tov et al. (2018) introduced LIA, a programmable
personal assistant that learned from user-provided
condition-action rules. Furthermore, Weigelt et al.
(2020) introduce an approach for teaching systems
new programmatic functions from language that
explicitly reasons about whether utterances con-
tain “teaching intents,” a mechanism that is similar
to our procedure for returning NOT-SURE. Once
these “teaching intents” have been identified, they
are parsed into corresponding code blocks that can
then be executed. Other work leverages conver-
sations to learn new concepts, generating queries
for users to respond to (Artzi and Zettlemoyer,
2011; Thomason et al., 2019). Notably, Thoma-
son et al. (2019) used this conversational structure
in a robotics setting similar to ours, but focused
on learning new percepts, rather than structural
abstractions. Yao et al. (2019) defined a similar
conversational system for Text-to-SQL models that
decides when intervention is needed, and generates
a clarification question accordingly.

General Instruction Following. Other work
looks at instruction following for robotics tasks out-
side the semantic parsing paradigm, for example by
mapping language directly to sequences of actions
(Anderson et al., 2018; Fried et al., 2018; Shrid-
har et al., 2020), mapping language to representa-
tions of reward functions (Arumugam et al., 2017;
Karamcheti et al., 2017), or learning language-
conditioned policies via reinforcement learning
(Hermann et al., 2017; Chaplot et al., 2018).

6 Discussion & Lessons Learned

Towards More Complex Settings. Our analysis
in Section 4.2 suggests that situating our system
in a more complex setting might allow us to truly
see the benefits of learning by decomposition. One
such setting is Voxelurn (Wang et al., 2017), with
its open-ended tasks that allow for the definition of
multiple different high-level abstractions with com-
positional richness. In contrast, the tasks in this
work are linear, with similar sequences of primi-
tives used to accomplish each high-level task.

Future work should use this insight and iden-
tify environments that are more complex and open-
ended, where users are naturally incentivized to
teach the system new abstractions that built atop

each other, to facilitate performing more complex
behaviors. In robotics, this might translate to build-
ing systems for cooking, perhaps taking inspiration
from Epic Kitchens (Damen et al., 2018), where
the set of high-level objectives (general recipes to
follow, kitchen behaviors to imitate) is much larger,
but where individual subtasks (low-level abstrac-
tions like slicing a vegetable, stirring a pot) are very
common and generalizable. Other settings might
include open-ended building tasks, either in the
real world (Knepper et al., 2013; Lee et al., 2019),
or in virtual worlds like Minecraft (Johnson et al.,
2016; Gray et al., 2019).

On Trusting Interactive Learning. Users have
an implicit expectation that after providing just a
single example — say to “wash the coffee mug”
— the system will know how to “wash the tomato”
or even “clean the plate” immediately. However,
existing machine learning is not built with such ex-
treme data efficiency in mind; especially for harder
types of generalization (e.g. to “clean the plate”),
we cannot guarantee learning this in a single step.
While in this work we show reliable one-shot gen-
eralization across objects in a simplified setting,
the real-world is much more complex, and differ-
ent entities merit different behaviors. For example,
consider generalizing from “wash the spoon” to
“wash the table”; a system like ours will try to exe-
cute the program taught in the first context (going
to the sink, placing the object inside, etc.) to the
second, leading to complete failure.

Part of the problem is a lack of transparency;
after teaching an example, it is hard for a user to
understand what the system knows. This impacts
trust, and as a result, when the system makes a
mistake interpreting a high-level utterance, users
back off to using utterances they are confident the
system will understand (mirroring our observed
results). This suggests future work in building more
reliable methods for one-shot generalization and
interpretability, providing users with a clear picture
of what the model has learned.
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Abstract

Translating natural language utterances to exe-
cutable queries is a helpful technique in mak-
ing the vast amount of data stored in relational
databases accessible to a wider range of non-
tech-savvy end users. Prior work in this area
has largely focused on textual input that is
linguistically correct and semantically unam-
biguous. However, real-world user queries are
often succinct, colloquial, and noisy, resem-
bling the input of a search engine. In this
work, we introduce data augmentation tech-
niques and a sampling-based content-aware
BERT model (COLLOQL) to achieve robust
text-to-SQL modeling over natural language
search (NLS) questions. Due to the lack of
evaluation data, we curate a new dataset of
NLS questions and demonstrate the efficacy
of our approach. COLLOQL’s superior perfor-
mance extends to well-formed text, achieving
84.9% (logical) and 90.7% (execution) accu-
racy on the WikiSQL dataset, making it, to the
best of our knowledge, the highest performing
model that does not use execution guided de-
coding.

1 Introduction

Relational databases store a vast amount of the
world’s data and are typically accessed via struc-
tured query languages like SQL. A natural lan-
guage interface to these databases (NLIDB) could
significantly improve the accessibility of this data
by allowing users to retrieve and utilize the infor-
mation without any programming expertise. With
the release of large-scale datasets (Zhong et al.,
2017; Finegan-Dollak et al., 2018; Yu et al., 2018b),
this task has gained a lot of attention and has been
widely studied in recent years.

Prior research has primarily focused on trans-
lating grammatical, complete sentences to queries.

∗ This research was conducted during the author’s intern-
ship at Salesforce.

Figure 1: Examples of search-style user queries.

However, an internal user survey on the search ser-
vice of a major customer relationship management
(CRM) platform1revealed that users have a ten-
dency to communicate in a colloquial form which
could vary from using only keywords (“player 42”)
to very short phrases (“show player 42”) to com-
plete sentences (“Who is the player who wears Jer-
sey 42?”). Apart from variation in style, users drop-
ping content words from their searches in the inter-
est of brevity also has the potential consequence of
making their questions ambiguous. This could ren-
der the task unsolvable even to models accustomed
to the NLS style of text. For example, in Figure 1,
without the word “Jersey”, it is impossible to iden-
tify which column’s value (Id or Jersey) must
equal 42.

In this work, we show that Text2SQL systems
trained on only complete sentences struggle to
adapt to the noisy keyword/short phrasal style of
questions. To combat this, we introduce different
data augmentation strategies inspired from our user
search patterns and style. To tackle the induced
ambiguity, a potential solution is to utilize the table
content by allowing the model to scan the table
for different terms present in the question and uti-
lize that information to disambiguate (If the token
“42” was only found in the Jersey column, then
Jersey must be the column equal to 42). Though
effective, this approach could become prohibitively
expensive (in terms of inference time or memory

1https://www.salesforce.com/
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required) on large tables as the model would have
to search over the entire of the table content for
every question.

We hypothesize that in most cases, the model
only needs samples from the table content and
not the exact rows that match tokens in the NLS
question to disambiguate columns. For example,
if the Id column contained alpha-numeric IDs,
Player and Nationality contained strings,
and Jersey contained two digit numbers, then
Jersey must be the column equal to 42. Sam-
pling alleviates the need of a full table scan for ev-
ery question. The samples for each column could
be generated offline and remain unchanged across
questions or periodically refreshed (to reflect poten-
tial distribution shifts in the table or user queries),
allowing for adaptation and personalization without
retraining the model.

In summary, our contributions are as follows:

1. We augment the well-formed WikiSQL
dataset with synthetic search-style questions
to adapt to short, colloquial input.

2. We propose new models which incorporate
table content in a BERT encoder via two sam-
pling strategies to handle ambiguous ques-
tions.

3. We perform an in-depth qualitative and quan-
titative (accuracy, inference time, memory)
analysis to show the efficacy of each content
sampling strategy.

4. We curate a dataset of 400 questions to bench-
mark performance of Text-to-SQL models in
this setting.

Apart from adapting to NLS style questions,
COLLOQL also achieves state-of-the-art perfor-
mance on the original WikiSQL (Zhong et al.,
2017) dataset, outperforming all baselines that do
not use execution guided decoding. We base our
work off SQLova (Hwang et al., 2019) but our
methods are generalizable to other approaches2.

2 Related Work

Text2SQL falls under a broader class of semantic
parsing tasks and has been widely studied in the
NLP and database communities. While early works
have focused on pattern-matching and rule-based

2Our code and annotated data can be found at
https://github.com/karthikradhakrishnan96/
ColloQL.

techniques (Androutsopoulos et al., 1995; Li and
Jagadish, 2014; Setlur et al., 2016), with the intro-
duction of large scale datasets like WikiSQL, recent
works have focused on neural methods for gener-
ating SQL. They can be broadly categorized into
a few themes - sequence to sequence (Seq2Seq),
sequence to tree (Seq2Tree), and SQL-Sketch (log-
ical form) methods.

Seq2Seq models frame the task as an encoder-
decoder problem by trying to generate the SQL
query token-by-token from the input question.
However, as noted by Xu et al. (2018) these mod-
els suffer from the “order matters” issue where the
model is forced to match the ordering of the where
clauses. Zhong et al. (2017) employ reinforcement
learning based method to overcome this issue but
the gains from this has been limited as noted in
Xu et al. (2018). Seq2Tree models generate the
SQL query as an abstract syntax tree (AST) in-
stead of a token sequence (Guo et al., 2019; Wang
et al., 2020). These approaches define a generation
grammar for SQL and learn to output the action se-
quence for constructing the AST (Yin and Neubig,
2018). Seq2Tree approaches are widely adopted for
benchmarks that contain complex SQL queries (Yu
et al., 2018b) as the syntactic constraints they adopt
are effective at pruning the output search space
and capturing structural dependencies. However,
they do not show much advantage on the WikiSQL
benchmark where the SQL ASTs are largely flat.

Figure 2: SQL-Sketch from Xu et al. (2018).

SQLNet (Xu et al., 2018) introduces the concept
of a SQL-Sketch, where it generates a sketch cap-
turing the salient elements of the query as opposed
to directly generating the query itself. SQLNet
uses LSTMs to encode the question and headers
and employs column attention to predict different
components of the SQL-Sketch. As shown in Fig-
ure 2, the query is decomposed into different com-
ponents which are predicted individually. Type-
SQL (Yu et al., 2018a) extends upon this approach
by augmenting each token in the question with its
type (whether it resembles the name of the column,
FreeBase entity type, etc). SQLova (Hwang et al.,
2019) replaces the LSTMs encoder from SQLNet
and uses BERT to encode the question and headers
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jointly. Unlike SQLNet, SQLova does not share
any parameters in the decoders and identifies the
where clause values using span detection instead
of pointer generators. HydraNet (Lyu et al., 2020)
breaks down the problem into column-wise ranking
and decoding and assembles the outputs from each
column to create the SQL query.

Recent works like NL2SQL-RULE (Guo and
Gao, 2019) and Photon (Zeng et al., 2020) have
looked into incorporating table content into the
SQL generation. NL2SQL-RULE augments BERT
representations with feature vectors for each ques-
tion token indicative of a match with table con-
tent and Photon only incorporates content of a
limited set of categorical fields when there is
an exact match with a question token. Unlike
NL2SQL-RULE, ColloQL includes table content
in the BERT encoder allowing it to form content-
enhanced question and header representations and
unlike Photon, ColloQL incorporates content for
all columns and includes samples even when there
is not an exact match to disambiguate columns ef-
fectively.

One common theme across all the high perform-
ing models on WikiSQL is that they all employ
Execution Guided (EG) decoding. First introduced
by Wang et al. (2018), EG is a technique where par-
tial SQL queries are executed and their results are
used to guide the decoding process. While EG has
been shown to boost accuracy significantly, we do
not apply execution guided decoding on our models
for two reasons: Firstly, most EG methods modify
the predicted query based on whether an empty set
is returned. While this works well in the WikiSQL
setting, having no results is often not due to an erro-
neous query. It is not uncommon for users to issue
searches like “my escalated support cases”(with the
expectation of surfacing zero records) or “John Doe
leads”(to ensure that a record does not already exist
before creating one) and we wanted to eliminate the
reliance on database outputs to translate a query
correctly. Secondly, database tables could have
over 1M records and performing multiple database
executions for every query could be expensive and
is not always feasible whilst keeping up with the
latency requirements of clients.

3 Task and Datasets

The Text2SQL task is to generate a SQL query
from a natural language question and the database
schema/content. In this work, we use the Wik-

iSQL dataset (Zhong et al., 2017) as it most closely
matches the queries we expect to serve in a CRM.
Our users typically don’t issue linguistically com-
plex queries requiring joins or nesting but instead
focus on filtering a single table based on certain
clauses.

WikiSQL contains over 80K natural language
questions distributed across 24K tables and their
gold SQL queries. The performance is typically
evaluated on two different types of accuracies -
Logical Form (LF) and Execution (EX). LF mea-
sures if the generated query exactly matches the
gold query while EX executes the predicted and
gold queries on the database and verifies if the an-
swers returned by both are equal. Note that LF is a
stricter metric as many different SQL queries could
produce the same output.

The WikiSQL dataset mostly comprises of ver-
bose questions which differ in style as compared
to the NLS questions issued by our users. Table
1 shows NLS questions and their WikiSQL-style
equivalents. To account for the differences in style,
we augment the WikiSQL dataset with our syn-
thetic data to simulate real-user NLS questions
which is generated as follows.

Synthesizing user utterances from gold SQL la-
bels Since WikiSQL contains the gold labels for
the SQL sketch, we can use this data to generate
NLS-style questions. By analyzing our user search
queries (which resemble those shown in Table 1)
we built question templates which we fill based on
the gold SQL-Sketch. Some examples include shuf-
fling the ordering of where conditions (users apply
filters in different order), interchange ordering of
column names and values (some users type “US
region cases” while others type “region US cases”),
and insert the select column name in the beginning
or the end of a question (“John Doe accounts” vs
“accounts John Doe”). The synthetic data is used in
conjunction with clean well-formed queries from
the original dataset, allowing the model to gener-
alize to other queries not present in the templates.
An example of synthetic utterances generated this
way is shown below.

Original Query - Who is the player of Aus-
tralian nationality that wears jersey number 42?

Generated Queries - player jersey 42 aus-
tralian nationality; 42 jersey australian nationality
player; australian nationality jersey 42 player; . . .
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acme opportunities which opportunities are for acme account
John Doe accounts where John Doe is owner what are accounts
deals with revenue >10 which deals have an expected revenue of over 10
number of deals closed in 2019 how many deals have closing year as 2019

Table 1: WikiSQL questions and their NLS-style counterparts.

Supporting relational symbols in user utter-
ance We identify popular query ngrams when
the conditional operator in the SQL-Sketch corre-
sponds to either “>” or “<” and randomly replace
these ngrams (“bigger than”, “larger than”, etc)
with the operator symbols, allowing our model to
properly interpret them.

Controlled question simplification Since Wik-
iSQL contains no keyword-based questions and
only a small portion of questions that are succinct
enough to require reasoning over the table con-
tent, we employ a sentence simplification model
followed by manual verification to create a test
dataset to evaluate performance on NLS questions.
A common user behavior is to drop unnecessary
words from complete sentences to create shorter
questions. We simulate this behavior by simpli-
fying/compressing sentences to reduce verbosity.
Note that keyword queries can be viewed as an ex-
treme case of sentence simplification where only
the required keywords are retained.

We make use of the controllable sentence simpli-
fier by Handler and O’Connor (2019) to compress
sentences to a desired length whilst retaining a
specified set of keywords. We specify the list of
keywords to be the header name of the select col-
umn, the values in the where columns (we ignore
the header names for the where columns as users
tend to omit them from their queries).

A potential problem with sentence simplification
models is ensuring that the shortened version still
has enough information to execute the query cor-
rectly. This could vary based on the table content
and is difficult to identify if the query is impossible
to be executed correctly. To ensure quality on our
test set, we had a team of data scientists and engi-
neers proficient in SQL to verify/correct outputs
produced by the sentence simplification model and
generated 400 queries to be used for testing.

4 Proposed Approach

Following Xu et al. (2018) and Hwang et al. (2019),
we decompose the SQL generation task into 6 dif-
ferent subtasks - one for each component of the
SQL-Sketch. These subtasks all share a common
encoder but use different decoder layers. The
encoder is a BERT model (Devlin et al., 2018)
which produces contextualized representations of
the question, headers and the decoders largely
use a task-specific LSTM with column-attention.
Column-attention (Xu et al., 2018) is a mechanism
where each header attends over all query tokens to
produce a single representation over which a dense
layer is used to predict probabilities.

The select, aggregation, where-num, and where-
operator branches use LSTMs + Column-attention
followed by a softmax layer to output probabilities.
The where-column branch is similar but uses a
sigmoid instead as multiple columns could appear
in the where clause and the where-value outputs
start-end spans for the values from the question.

Figure 3 highlights the architecture of our model.
We retain the same encoder-decoder architecture
as SQLova as our main contribution lies in the data
augmentation and content sampling techniques to
handle NLS questions.

4.1 Content Incorporation

As highlighted previously, table content could be a
useful feature in helping the model disambiguate
between different columns. Consider a table of
tennis players as shown below.

Result Court Player
winner clay Rafael Nadal

runner-up grass Novak Djokovic

winner hard Jarkko Nieminen

Now, consider a question “courts with Rafael
Nadal as winner”. A model which isn’t informed
about the content of the table cannot easily un-
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[CLS]  show  player  42  [SEP]  Player  name  ||  Raf  Nadal  |  Novak  Djoc  |  [SEP]  Jersey  ||  16  |  23  [SEP]  Nationality  ||  Italy    …

BERT

LSTM-q LSTM-h LSTM-q LSTM-h LSTM-q LSTM-h LSTM-q LSTM-h LSTM-q LSTM-h LSTM-q LSTM-h

Column Attn

Select Column

Column Attn

Aggregation 
Operator

Self Attn

# Where clauses

Column Attn

Where Column

Column Attn

Where Operator

Column Attn

Where Value
LSTM

0 (player name) 0 (no aggregation) 1 [1] (Jersey) [=] [(2,2)] (span indices for “42”)

Figure 3: ColloQL uses the same NN architecture as SQLova where six decoding layers (one for each component
of the SQL-Sketch) are used over BERT. The SQL query (SELECT Player Name WHERE Jersey = 42) is
constructed from outputs of different components. Unlike SQLova, we also contextualize the question with the
table samples (underlined in the figure) delimited by special tokens.

derstand that Rafael Nadal needs to be the where
clause value for Player and winner for the
Result column. Allowing the model to scan the
table for entities like “Rafael Nadal” or “winner”
could help the model incorporate table content ef-
fectively.

Consider another question “courts with Roger
Federer as winner”. It is intuitive that this query
follows the same structure as the previous, except
that the required value is now “Roger Federer”.
However, “Roger Federer” is not present in the
table. We hypothesize that while table content is
useful to the model, it does not need to be relevant
to the query. The model, when given random sam-
ples of values for each column can infer the role of
a particular column and generalize to unseen values
which are similar to the column samples. In this
work, we experiment with two sampling techniques
- random and relevance sampling.

4.1.1 Random Sampling
Random sampling uses a fixed set of question ag-
nostic column values sampled randomly (without
replacement) and does not require access to the
table once the samples are created. Since the sam-
pling process can be done entirely offline, it adds
negligible memory and time to the query execution.
Additionally, the model can now be used in privacy
sensitive scenarios as it does not access the table
content and the samples could be manually con-
figured. The model, now being content informed,
performs better than its non-content counterparts
whilst being more efficient than its full table con-
tent counterparts.

4.1.2 Relevance Sampling
Relevance sampling is used in cases where access
to table is permitted and it includes a combination

of samples relevant to question tokens and random
samples. We index all cells of a table and per-
form a keyword search in the question to identify
most relevant cells using FlashText (Singh, 2017)
and include them as samples. In situations where
the number of keyword matches are fewer than in-
tended for a column or there are no matches, we
fallback on random sampling to select the remain-
ing samples.

To illustrate the importance of including random
samples in the relevance sampling strategy, con-
sider the following example:

Question - Which countries hosted the MHL
league?
League values - NHL, MLB, NBA

Photon (Zeng et al., 2020), a model which
only includes a single matched value, interprets
this query incorrectly (Select country where

league = MHL league) as no samples are in-
cluded.3 Our model with relevance sampling tack-
les cases like this successfully (Select country

where league = MHL) as NHL, MLB, and NBA
were included as samples because of the fallback
on random sampling. Including random samples
improves the model’s ability to interpret questions
which have values not directly found in the table.

The addition of random samples also allows the
model to discriminate between columns effectively.
Consider Question 4 from Table 2. The question
is ambiguous without table content because it is
unclear if the column to be selected is Place or
Country. The pattern “where are. . . from?” indi-
cates that the user’s intent is to find a location and
both column names seem like a reasonable choice
(Place is a synonym for location and Country

3We ran the evaluation on Photon’s demo page.
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grid of bmw rider with > 200 laps
Rider || Nicolas Terol |Mike Di Meglio | Stevie Bonsey [SEP] Manufacturer || Derbi | Honda
| KTM [SEP] Laps || 1 | 24 | 0 [SEP] Grid || 20 | 29 | 25 . . .

SQL SELECT (Grid) FROM 2-14125739-3 WHERE Manufacturer = bmw AND Laps > 200

grid of maria herrera rider with < 200 laps
Rider || Nicolas Terol |Mike Di Meglio | Stevie Bonsey [SEP] Manufacturer || Derbi | Honda
| KTM [SEP] Laps || 1 | 24 | 0 [SEP] Grid || 20 | 29 | 25 . . .

SQL SELECT (Grid) FROM 2-14125739-3 WHERE Rider = maria herrera AND Laps <

200

fox tv series female
Animal Name || Jack | The Big Owl | The Wild Boar [SEP] Species || Fox | Badger | Boar
[SEP] Books || No | Yes [SEP] Gender || male | female . . .

SQL SELECT (TV Series) FROM 2-11206371-5 WHERE Species = fox AND Gender =

female

Where are Charlie Freedman/Eddie Fletcher from?
Place || 7 | 9 | 1 [SEP] Rider || Charlie Freedman/Eddie Fletcher | Mick Horsepole/E
. . . [SEP] Country ||West Germany | Switzerland | United Kingdom [SEP] . . .

SQL SELECT (Country) FROM 2-10301911-6 WHERE Rider = charlie freedman/eddie

fletcher

Table 2: Some qualitative examples from our random (1,2) and relevance (3,4) sampling models. Bold values in
headers indicate a match in the question.

is a location). However, when augmented with
random column samples, we see that the Place
column only contains numeric values and is used
as the synonym of “rank” in this table.

Figure 3 shows our input representation to the
BERT model. Our representation bears similar-
ity to Photon where the content values are con-
catenated along with the headers and the question
separated by special tokens. However, Photon only
tackles columns with picklists (categorical columns
storing small fixed set of values) while we sup-
port numeric and free-form text columns as well.
Additionally, as mentioned above, since Photon
only incorporates a single matched value, it doesn’t
gracefully interpret all questions.

We concatenate the column samples to the head-
ers with special delimiters and experiment with
1,3,5 samples for each column. In cases where the
number of samples exceeds the number of values
in the column, we include all values. The number
of samples is currently limited by the maximum
sequence length supported by BERT models and
in the future we hope to experiment with operat-
ing on each column individually (Lyu et al., 2020)
and diversity based sampling to extract the most

distinctive samples.

5 Experiment Setup

We use the base version of BERT in all our ex-
periments and made necessary changes for sam-
pling on the original SQLova codebase. We use
Adam (Kingma and Ba, 2019) optimizer with a
learning rate of 1e-3 for the decoder layers and
1e-5 for the BERT model.

6 Results

Table 2 shows some qualitative examples from
our model when augmented with 3 samples for
every column. The model matches values such
as Maria Herrera, BMW, etc to the right columns
even though these values were never seen before.
Queries 1 and 2 differ only in the value token
matching to different columns and the model uses
the samples to correctly match BMW to manu-
facturer (column storing brand name like values)
and Maria Herrera to rider (column storing human
name like values).
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6.1 Effect of Augmentation
Since SQLova was originally trained with com-
plete sentences, it does not adapt well to short ques-
tions. Retraining the same model with augmented
data from our templates recovers the performance.
Additionally, the augmentation also results in im-
proved generalization resulting in a minor LF ac-
curacy improvement on the original dev data as
shown in Table 3.

Model LF(short) LF(dev)

SQLovaBASE 54.0 79.5
+ Data Augmentation (†) 86.2 80.6

Table 3: Comparing logical form accuracy of SQLova
with augmentation. LF(short) is the dev accuracy on
the short questions. LF(dev) is the accuracy on the Wik-
iSQL dev split.

6.2 Effect of Random Sampling
We show performance of our model evaluated on
the original WikiSQL dev dataset under different
sampling settings. Owing to the 512 token limit,
we only sample upto 5 values per column in Table
4. Modifying the architecture to operate on one
column at a time (HydraNet) would allow us to use
more samples. Our model performs significantly
better than our base SQLova model and performs
competitively with other larger models.

Model LF (dev) EX (dev)

SQLovaBASE 79.5 85.3
SQLovaLARGE 81.6 87.2
HydraNetLARGE

* 83.6 89.1
COLLOQL rand:1

† 82.0 87.6
COLLOQL rand:3

† 83.3 89.1
COLLOQL rand:5

† 83.5 89.3

Table 4: Model performance with different sampling
settings. Rand:[1,3,5] uses random sampling. † indi-
cates that data augmentation is added.

6.3 Effect of Relevance sampling
In addition to random sampling, we also provide
results on a model that finds the most relevant sam-

† stands for +Data Augmentation in all tables
* Due to unavailability of code, HydraNet numbers are

only reported on datasets used in their paper

ples to the question. In Table 5, we compare our
results with NL2SQL-RULE (Guo and Gao, 2019)
(uses entire table content) and EM:1 (including a
single exactly matched value), the content incor-
poration strategy adopted by Photon (Zeng et al.,
2020). Since WikiSQL does not distinguish cat-
egorical columns, we applied the exact match to
all columns. Our model achieves 85.2% logical
form and 90.65% execution accuracy on the orig-
inal WikiSQL dataset outperforming all models
without EG.

Model LF (dev) EX (dev)

NL2SQLBASE 84.3 90.3
COLLOQL em:1

†‡ 82.5 88.2
COLLOQL rand:3

† 83.3 89.1
COLLOQL rel:3

† 85.2 90.6

Table 5: Efficacy of different content incorporation
strategies. Relevance sampling (with 3 samples) gives
the best performance. ‡denotes our implementation of
Photon.

We also studied the memory and time footprint
for indexing cells with increasing table sizes by
benchmarking the performance of random and rel-
evance sampling on very large tables. To simulate
real-world data, we used IMDB movie database - a
large-scale database with tables spanning over 7M
rows containing movie metadata.

The random sampling method is agnostic to table
size as samples are generated just once while the
relevance sampling method scans the table to pick
the best samples for each query. The results are
shown in Table 6.

Model Rows Exec RAM Setup

COLLOQL rand:3 1M 0.2s - -
COLLOQL rel:3 1M 1.5s 4G 20s
NL2SQLBASE 1M 200s 1.4G -

COLLOQL rand:3 7M 0.2s - -
COLLOQL rel:3 7M 15s 18G 60s
NL2SQLBASE 7M x 8G -

‘-’→ negligible; ‘x’→ practically intractable

Table 6: Benchmarking different content incorporation
strategies with respect to execution time (CPU), mem-
ory footprint and setup time (for indexing).
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6.4 Performance on simplified queries
To measure the efficacy of content augmentation,
we compared COLLOQL with other works on our
dataset of 400 simplified queries which was gen-
erated by the sentence simplification model and
verified/corrected by a team of data scientists and
engineers. This dataset largely contains queries in
which the where columns are not explicitly men-
tioned in the query and requires the model to infer
them. We can see from Table 7 that a model un-
informed of the content drops in accuracy (espe-
cially in the where column prediction) while COL-
LOQL retains its performance.

Model LF Where-col acc

SQLovaBASE 68.7 78.2
NL2SQLBASE 80.8 94.3
COLLOQL rand:5

† 83.2 92.2
COLLOQL rel:3

† 87.0 97.2

Table 7: Performance on the curated test set i.e. 400
simplified queries.

6.5 Performance on WikiSQL test set
Finally, we also show the performance of our model
on the WikiSQL test dataset comparing them to the
top approaches on the WikiSQL leaderboard4. As
we can see in Table 8, COLLOQL achieves the high-
est accuracy without execution guided decoding on
the WikiSQL test set.

Model LF(test) EX(test)

HydraNetLARGE 83.8 89.2
NL2SQLBASE 83.7 89.2
COLLOQL rel:3

† 84.9 90.7

Table 8: Performance on the WikiSQL test set.

7 Error Analysis

We classified the errors made by our model on the
ColloQL curated dataset into two major categories:

Aggregation - Given that WikiSQL contains
noisy labels for aggregation component (Hwang
et al., 2019) and the model was optimized for accu-
racy on WikiSQL, there are some errors in predict-
ing this slot.

4https://github.com/salesforce/WikiSQL

Select Columns - The simplified questions are
often more ambiguous when predicting whether a
column is a target to be selected or is used in a filter-
ing condition (e.g. for the question “smallest ties-
played 6 years”, the model interprets it as SELECT
MIN(years) WHERE tiesplayed = 6 while the
correct query is SELECT MIN(tiesplayed) WHERE

years = 6). Additionally, we noticed that our an-
notators simplified column headers like “shortstop”
and “rightfielder” to “SS” and “RF”, making the
question very difficult to solve.

8 Conclusion and Future Work

In this work we tackled the task of converting noisy
(short, potentially ambiguous) search-like (NLS)
questions to SQL queries. We introduced data aug-
mentation strategies to adapt to the NLS style of
text and a novel content enhancement to BERT via
two sampling strategies - Random and Relevance
sampling. Random sampling overcomes some of
the performance / privacy challenges of incorporat-
ing table content and relevance sampling achieves
state-of-the-art performance when access to table
content is permitted. Finally, we also curated a new
held-out dataset to evaluate performance against
NLS questions.

In future, we hope to explore different sampling
techniques (based on user history, sampling to max-
imize discernment between columns) to enhance
performance. Given that our approach is largely
model agnostic, we hope to extend our improve-
ments to other models/datasets.
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Abstract

Generation of natural language responses to
the queries of structured language like SQL
is very challenging as it requires generaliza-
tion to new domains and the ability to an-
swer ambiguous queries among other issues.
We have participated in the CoSQL shared
task organized in the IntEx-SemPar workshop
at EMNLP 2020. We have trained a num-
ber of Neural Machine Translation (NMT)
models to efficiently generate the natural lan-
guage responses from SQL. Our shuffled back-
translation model has led to a BLEU score of
7.47 on the unknown test dataset. In this paper,
we will discuss our methodologies to approach
the problem and future directions to improve
the quality of the generated natural language
responses.

1 Introduction

Natural language interfaces to databases (NLIDB)
has been the focus of many research works, includ-
ing a shared track on the Conversational text-to-
SQL Challenge at EMNLP-IntexSemPar 2020 (Yu
et al., 2019). We have focused on the second task,
natural language response generation from SQL
queries and execution results.

For example, when the SQL query “SELECT
dorm name FROM dorm” is present, a possible
response by the system could be “This is the list of
the names of all the dorms”. The ideal responses
should demonstrate the results of the query, present
the logical relationship between the query objects
and the results, and be free from any grammatical
error. Another challenge for this task is that the
system needs to be able to generalize and do well
on the SQL queries and the database schema which
it has never seen before.

2 Related Works

Many existing papers focus on text to SQL gen-
eration like Shin (2019) and Zhong et al. (2017)
which emphasize self-attention and reinforcement-
learning-based approaches. The problem of gener-
ating natural language responses from SQL is that
this specific area is relatively under-researched, but
we have tried to come up with probable solutions
in this shared task.

Gray et al. (1997) inspired us to generalize SQL
keywords for better response generation with im-
provement in generalization. We have employed
back-translation, used by Sennrich et al. (2015) and
Hoang et al. (2018), in order to increase the BLEU
score. We were also motivated by the linguistic
generalization results pointed out by Bandyopad-
hyay (2019) and Bandyopadhyay (2020) where the
lemma and the Part-of-Speech tag are added to the
natural language dataset for better generalization.
Although we did not include it in our final model
due to challenges in removing the linguistic fac-
tors, this approach offers a potential future in the
generalization of the generated natural language
responses.

3 Pre-processing Methods

We decided to take the Neural Machine Translation
(NMT) approach, where the SQL queries with the
execution results are regarded as the source, and
the natural language, more specifically English,
responses are seen as the target. We chose Seq2seq
as our baseline model. After several attempts of
training and parameter tuning, we were able to
obtain a baseline BLEU score.

In order to further improve the BLEU score, first,
we came up with the idea of SQL keyword gener-
alization. SQL keyword generalization is a pre-
processing method we applied to the input data (i.e.
the SQL queries with the execution results). We
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Original Keywords Generalization
UNION, INTERSECTION,
EXCEPT SET
AND, OR LOGIC
EXISTS, UNIQUE, IN NEST
ANY, ALL RANGE
AVG, COUNT, SUM,
MAX, MIN AGG

Table 1: The grouped SQL keywords and their substi-
tutions.

first put the common SQL keywords into differ-
ent groups based on their characteristics. Table 1
shows our choices of grouping. Then, we substi-
tuted each of those keywords in the input data to
the newly purposed, generalized name according
to the group we put the keyword in.

More specifically, UNION, INTERSECTION,
and EXCEPT are substituted as SET because these
three keywords are set operations. AND and OR
are substituted as LOGIC because they are logic
operators. One thing worth noting is that although
AND in SQL is not only a logic operator as it can
also be used to join tables, the phrase “JOIN . . .
ON . . .” is primarily used for this particular pur-
pose. EXISTS, UNIQUE, and IN are substituted
as NEST because these keywords are followed by
one or multiple nested queries. ANY and ALL are
substituted as RANGE since they are followed by a
sub-query that will return a range of values, and an
operator such as > is usually in front of ANY and
ALL to compare with those values returned by the
sub-query. AVG, COUNT, SUM, MAX, and MIN
are substituted as AGG since all these keywords
are aggregate operators.

The remaining common SQL keywords are dif-
ficult to be grouped with other ones. For example,
GROUP BY and HAVING have distinct meanings
and work differently as they are followed by non-
identical elements. GROUP BY is followed by a
“grouping-list”, usually an attribute of a table, while
HAVING is followed by a “group-qualification”,
usually a comparison involving an operator. There-
fore, those keywords are kept as they are in the
input data. Moreover, the operators are also not
generalized since >, ≥, <, ≤ are used to compare
numerical values only, while = and 6= are used to
compare non-numerical values as well, like strings.

Overall, the reason we applied this SQL keyword
generalization pre-processing is to avoid situations

where certain common keywords are seen only for
a few times or even never seen in the training data
set, then the trained model would react poorly to
those keywords in the test data set by pulling words
from the vocabulary almost randomly.

4 Shuffled Back-Translation

Another idea we utilized to improve the BLEU
score is the iterative back-translation as described
in Shin (2019) and Zhong et al. (2017).

Back-translation is a simple way of adding syn-
thetic data to the training model by training a target-
to-source model, then generating a synthetic source
dataset using a monolingual corpus on the target
side. The synthetic source dataset and the provided
target dataset are augmented to the training datasets
to re-train the model. Since no monolingual cor-
pus was provided in our case, we split the original
dataset. To address any potential bias, we shuf-
fled the dataset before splitting so that the created
monolingual dataset is free from bias.

We also tried a variant of back translation called
cyclic translation. The idea simply repeats the step
of back-translation. After generating the synthetic
source dataset from the provided target dataset, that
dataset is used as input to the baseline source-to-
target model to generate the synthetic target dataset.
The synthetic source dataset and synthetic target
dataset are augmented to the training datasets to
train the model once again.

The shuffled back-translated model with a high
drop-out rate and more number of training steps
led to the highest BLEU score on the development
dataset as reported in Section 5.

5 Experiment and Results

A lot of diverse models have been trained for our
experiments as enumerated below which have been
labeled as follows:

1. Baseline (Model 1)

2. Baseline with SQL keyword generalization
(Model 2)

3. Baseline with SQL keyword generalization
and true-cased input (Model 3)
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Model BLEU score on the dev set
Model 1 7.60
Model 2 9.72
Model 3 10.39
Model 4 11.05
Model 5 10.85
Model 6 10.46
Model 7 11.75
Model 8 9.50
Model 9 12.12

Table 2: Cross validation results with different models.

4. Back-translation with SQL keyword general-
ization and true-cased input (Model 4)

5. Cyclic-translation with SQL keyword gener-
alization and true-cased input (Model 5)

6. Shuffled back-translation with SQL keyword
generalization and true-cased input (Model 6)

7. Back-translation with SQL keyword general-
ization and true-cased input (higher dropout
and more training steps) (Model 7)

8. Cyclic-translation with SQL keyword gener-
alization and true-cased input (higher dropout
and more training steps) (Model 8)

9. Shuffled back-translation with SQL keyword
generalization and true-cased input and drop-
out rate = 0.5 (Model 9)

These models have been described in the previous
sections. All the notable results are shown in Table
2.

We began our experiment by tuning the hyper-
parameters of the Seq2seq model in Tensorflow
NMT. After repeated experimentation, we selected
the parameters for our baseline training model
(Model 1) as follows:

1. 4 layered bi-directional encoder

2. Source and target sequence length of 60

3. Adam optimizer

4. 0.001 as the initial learning rate

5. luong10 learning rate decay scheme as de-
scribed in Tensorflow NMT

6. 12000 training steps

7. 0.4 drop-out rate

The other parameters are set to the default Ten-
sorflow NMT values.

Then, we came up with the idea of SQL key-
word generalization and implemented this idea. It
turned out to be wonderful and improved the BLEU
score significantly (from 7.60 to 9.72). Next, we fo-
cused on other possible pre-processing techniques
that we could apply. We initially were considering
four methods: tokenization, true-casing, linguistic
factorization, and byte pair encoding. According
to our testing, byte pair encoding, and the combi-
nation of these two methods degraded the BLEU
score. Linguistic factorization led to high BLEU
scores but the removal of the linguistic factors from
the generated response again reduced the BLEU
score. Tokenization also degrades the performance
of the model. After carefully observing the given
dataset, we found that it has already been tokenized,
so further tokenization is unnecessary. In the end,
SQL keyword generalization and true-casing are
the two pre-processing techniques that we apply to
the model.

Afterwards, we started to think about the steps
in the training process that we could improve. We
implemented back-translation, and it increased the
BLEU score. However, we found this method is
likely to introduce an overfitting issue. To be more
specific, since we were not given any test data or
any dataset analogous to a monolingual corpus, we
split the given ground truth file for the development
set into two files and used them (one as our “de-
velopment” ground truth and the other as our “test”
ground truth) for the external evaluation during
the training. The model achieved a much higher
BLEU score on our “development” ground truth
than previously recorded but the BLEU score on
our “test” ground truth decreased in comparison to
that previously recorded.

Then, we came up with three ways to deal with
this issue. The first one was the cyclic translation
where no extra data (i.e. the monolingual data) is
introduced in the training. This new way of train-
ing did help with the overfitting issue with a higher
BLEU score on our created “test” dataset but failed
to improve the BLEU score on the given devel-
opment set. The second way was to shuffle the
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monolingual data used in the back-translation. It
solved the overfitting issue but did not achieve a
higher BLEU score on the development data either.
The last way was to change the values for certain
hyper-parameters. For instance, we increased the
dropout rate from 0.4 to 0.5 to strengthen regular-
ization. Accordingly, we also increased the number
of training steps from 12000 to 20000. We applied
the hyper-parameter changes to all three training
methods, the original back-translation, cyclic trans-
lation, and shuffled back-translation. In the end, the
shuffled back-translation model with the new hyper-
parameter settings and the two pre-processing prac-
tices achieved the highest BLEU score on the de-
velopment set.

6 Conclusion

Our submitted shuffled back-translation with a
drop-out rate of 0.5 and 20000 training steps on
Tensorflow NMT gives a BLEU score of 7.47 on
the unknown testing dataset and a BLEU score of
12.12 on the development dataset. A further conclu-
sion can be drawn once the Grammar and the Log-
ical Consistency Rate (LCR) scores are released
by the organizers. It can be observed that shuffled
back-translation with a higher drop-out rate gave a
high BLEU score on the development dataset com-
pared to the baseline or the back-translated model
with a lower drop-out rate. This suggests that the
shuffling of the dataset before back-translation can
potentially address the issue of any bias in the
datasets. The improved results with increased drop-
out suggest that regularization has been effective
in this experimental setting. The idea of cyclic
translation deserves further exploration. General-
ization may be improved on the natural language
responses by developing an improved variant of the
linguistic factoring approach. The collection of ad-
ditional training data can also be useful to increase
the BLEU score on the unknown test dataset.
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